Minimize the sum of squared errors between the experimental and predicted data in order to calculate two parameters

22 visualizzazioni (ultimi 30 giorni)
In my research work, I use a model and I want to minimize the sum of squared errors between the experimental and predicted data in order to calculate two parameters.
The experimental data are:
u exp: [0.709; 0.773 ;0.823 ;0.849 ;0.884 ;0.927 ;0.981 ;1.026 ;1.054 ;1.053 ;1.048;1.039] ;
observed at z=[ 0.006;0.012;0.018;0.024;0.03;0.046;0.069;0.091;0.122;0.137;0.152;0.162];
The equation of the model that I use is:
u model=0.1073*((log(0.13/z)-1/3*(1-(z/0.13)^3)+2*a*(1+(b)^0.5)*cos(11.89*z)); and I want to calculate the parameters “a” et “b” by minimizing the sum of squared errors between “u exp” and “u model”.
Someone here can help me please?
Thank you already for your help!

Risposta accettata

Davide Masiello
Davide Masiello il 29 Mar 2023
Modificato: Torsten il 29 Mar 2023
You can use MatLab's fmincon.
z = [0.006;0.012;0.018;0.024;0.03;0.046;0.069;0.091;0.122;0.137;0.152;0.162];
u_exp = [0.709;0.773;0.823;0.849;0.884;0.927;0.981;1.026;1.054;1.053;1.048;1.039];
u_mod = @(P) 0.1073*(log(0.13./z)-1/3*(1-(z/0.13).^3)+2*P(1).*(1+P(2).^0.5).*cos(11.89*z));
sum_sq_err = @(P) sum((u_exp-u_mod(P)).^2);
P = fmincon(sum_sq_err,[0.1,0.1]);
Local minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
a = P(1)
a = 2.0158
b = P(2)
b = 0.3185
hold on
plot(z,u_exp,'o')
plot(z,u_mod(P))
hold off
grid on
  4 Commenti
ORESTE SAINT-JEAN
ORESTE SAINT-JEAN il 29 Mar 2023
Spostato: Star Strider il 29 Mar 2023
z = [0.006;0.012;0.018;0.024;0.03;0.046;0.069;0.091;0.122;0.137;0.152;0.162];
u_exp = [0.345;0.281;0.231;0.205;0.17;0.127;0.073;0.028;0.00;0.0010;0.0060;0.015];
u_mod = @(P) 0.1073*((log(0.132./z)-(1/3)*(1-(z/0.132).^3)+2*P(2).*(1+(P(1)).^0.5).*(cos(pi*z/0.264)).^2));
sum_sq_err = @(P) sum((u_exp-u_mod(P)).^2);
P = fminsearch(sum_sq_err,[0.01,0.01])
hold on
plot(z,u_exp,'o')
plot(z,u_mod(P))
hold off
grid on
P =
0.0506 0.2198
With the god data, everything it's ok.
THANK YOU FOR YOUR HELPS!!

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by