Azzera filtri
Azzera filtri

Fourier Series Integration in terms of Pi

12 visualizzazioni (ultimi 30 giorni)
Bob Gill
Bob Gill il 17 Apr 2023
Modificato: VBBV il 15 Lug 2024 alle 21:28
Hello,
The following code is just to check my integration of a fourier series transform, but the output doesn't seem to be right for bn. It displays a large number at the end of the bn output.
syms t
syms n 'integer'
an = (1/pi)*(int(-1*cos(n*pi*t/pi),-pi,-pi/2)+int(0*cos(n*pi*t/pi), -pi/2, pi/2)+int(1*cos(n*pi*t/pi), pi/2, pi))
bn = (1/pi)*(int(-1*sin(n*pi*t/pi),-pi,-pi/2)+int(0*sin(n*pi*t/pi), -pi/2, pi/2)+int(1*sin(n*pi*t/pi), pi/2, pi))
pretty(an)
pretty(bn)

Risposte (1)

VBBV
VBBV il 17 Apr 2023
Modificato: VBBV il 15 Lug 2024 alle 21:28
Hi @Bob Gill, the value of bn can be computed as follows
syms t n 'integer'
an = (1/pi)*(int(-1*cos(n*pi*t/pi),-pi,-pi/2)+int(0*cos(n*pi*t/pi), -pi/2, pi/2)+int(-1*cos(n*pi*t/pi), pi/2, pi))
an = 
bn = (1/pi)*(int(-1*sin(n*pi*t/pi),-pi,-pi/2)+int(0*sin(n*pi*t/pi), -pi/2, pi/2)+int(-1*sin(n*pi*t/pi), pi/2, pi))
bn = 
0
vpa(an,2)
ans = 
vpa(bn,2)
ans = 
0.0
  1 Commento
VBBV
VBBV il 17 Apr 2023
Modificato: VBBV il 17 Apr 2023
Use vpa to ccompute the bn value. You can also consider the vpaintegral function to compute the values for an and bn

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by