best approximation for double numbers

3 visualizzazioni (ultimi 30 giorni)
I have the following function which has an asymptote for y = 1 :
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )));
So, so the function should have a value < 1 for all x.
Also using "format long", of course, from a certain value of x onwards, the result of the function is approximated to 1.
format long
double(f(400)) % ans = 1
Is there a way to get an approximation to the exact value for even larger x? Or should I settle for this approximation?

Risposta accettata

VBBV
VBBV il 21 Lug 2023
format long
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )))
f(x) = 
vpa(f(400),100)
ans = 
0.9999999999999999981792806433707777978855866136633285567221016451791545277454316141363423975013892837
  2 Commenti
VBBV
VBBV il 21 Lug 2023
Try using vpa for large values of x
Walter Roberson
Walter Roberson il 21 Lug 2023
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )))
f(x) = 
f1 = simplify(expand(1-f))
f1(x) = 
double(f1(400))
ans = 1.8207e-18
fplot(f1,[500 600])
f1n = matlabFunction(f1)
f1n = function_handle with value:
@(x)1.0./(exp(x./1.0e+1+8.473e-1)+1.0)
fplot(f1n, [500 600])
f1 gives you an idea of how quickly the value approaches 1, by showing you how quickly the difference between 1 and f falls. f1n shows that a numeric approximation (instead of a symbolic) of 1-f is still not bad at all in this kind of range.

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by