Can you create a CNN with two images as inputs and a 6x1 array as an output?
11 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello,
I am getting started on using MATLAB's Deep Network Designer, but I have not been able to find any applications that are similar to what I am hoping to do. I have thousands of images from a video containing two 3D objects that are moving relative to one another. My goal for the neural network would be to input two consecutive images and then output the relative changes in motion between the two objects (so an array of translations and rotations). Is this possible to create in MATLAB (i.e., input = two images, output = 6x1 array)?
I have the "ground truth" data for how the two objects move relative to one another, but I'm not sure how to start setting up the CNN, and if it is even possible.
Thank you very much for your help, I really appreciate it!
0 Commenti
Risposte (1)
Mrutyunjaya Hiremath
il 31 Lug 2023
This is sample code.. Try it.
% Load your dataset and ground truth data here
% Replace 'input_images' and 'ground_truth' with your actual data
% 'input_images' should be a 4D array with size [height x width x channels x numPairs]
% 'ground_truth' should be a 2D array with size [numPairs x 6] representing the 6x1 array of translations and rotations
% Split the data into training, validation, and testing sets
numPairs = size(input_images, 4);
numTraining = round(0.7 * numPairs);
numValidation = round(0.2 * numPairs);
numTesting = numPairs - numTraining - numValidation;
trainingData = input_images(:, :, :, 1:numTraining);
trainingLabels = ground_truth(1:numTraining, :)';
validationData = input_images(:, :, :, numTraining+1:numTraining+numValidation);
validationLabels = ground_truth(numTraining+1:numTraining+numValidation, :)';
testingData = input_images(:, :, :, numTraining+numValidation+1:end);
testingLabels = ground_truth(numTraining+numValidation+1:end, :)';
% Create the CNN architecture
layers = [
imageInputLayer([size(input_images, 1) size(input_images, 2) size(input_images, 3) 2]) % Input layer with two images
convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1') % Convolutional layer with 16 filters of size 3x3
batchNormalizationLayer('Name', 'bn1') % Batch normalization
reluLayer('Name', 'relu1') % ReLU activation
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1') % Max pooling
convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2') % Convolutional layer with 32 filters of size 3x3
batchNormalizationLayer('Name', 'bn2') % Batch normalization
reluLayer('Name', 'relu2') % ReLU activation
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool2') % Max pooling
fullyConnectedLayer(128, 'Name', 'fc1') % Fully connected layer with 128 neurons
reluLayer('Name', 'relu3') % ReLU activation
fullyConnectedLayer(6, 'Name', 'fc2') % Output layer with 6 neurons (translations and rotations)
regressionLayer('Name', 'output') % Regression layer for continuous output
];
% Set the training options
options = trainingOptions('adam', ...
'MaxEpochs', 20, ...
'MiniBatchSize', 32, ...
'ValidationData', {validationData, validationLabels}, ...
'Plots', 'training-progress');
% Create and train the CNN
net = trainNetwork(trainingData, trainingLabels, layers, options);
% Test the CNN on the testing dataset
predictedLabels = predict(net, testingData);
% Calculate the Mean Squared Error (MSE) between predicted and ground truth labels
mse = mean((predictedLabels - testingLabels).^2);
disp(['Mean Squared Error: ' num2str(mse)]);
Vedere anche
Categorie
Scopri di più su Deep Learning Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!