- Define the system’s differential equations ("dP/dt" and "dH/dt").
- Create a grid over the phase space using "meshgrid".
- Evaluate the derivatives at each grid point.
- Use "quiver" to plot the direction field that shows the flow of the system.
I want to plot phase diagram .But I reach here maintion the code below please help ,me the remaining part
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
clc;clear;close all;
r=0.1;
k=50;
a=0.01;
e=0.5;
m=0.05;
s=0.1;
w=0.1;
b=0.001;
q=0.03;
F=1.;
M=50;
X=0:1:50;J=[0 50 0 20];
Pi_0=(w/(w+b*M))*(F/s);Pi_1=((w+b*M)/w)*(F/s);
D1=Pi_0+0*X;D2=Pi_1+0*X;
plot(D1,X,'k--')
axis(J)
hold on
plot(D2,X,'k--')
X1=(Pi_0/99);X2=(Pi_1-Pi_0)/99;X3=(50-Pi_1)/99;Y2=20/99;
P1=0:X1:Pi_0;H1=0:Y2:20;P2=Pi_0:X2:Pi_1;H2=0:Y2:20;P3=Pi_1:X3:50;H3=0:Y2:20;
u_1=0;u_2=((s.*P2)/(s.*P2+F)+(w*(s.*P2-F))/(b*M*(s.*P2+F)));u_3=1;
f = @(P1,H1) (r.*P1).*(1-P1/k)-(a.*P1.*H1)./(1+q*u_1*M);
fimplicit(f,[0 Pi_0 0 20],'g')
hold on
f1 = @(P1,H1) (e*a.*P1.*H1)./(1+q*u_1*M)- m.*H1;
fimplicit(f1,[0 Pi_0 0 20],'g')
hold on
%%
[P1, H1] = meshgrid(0, 0:0.01:Pi_0);
dP1dt = dP1(P1, H1);
dH1dt = dH1(P1, H1);
quiver(P1, H1, dP1dt, dH1dt, 'color', 'b');
f = @(P2,H2) (r.*P2).*(1-P2/k)-(a.*P2.*H2)./(1+q*((s.*P2)/(s.*P2+F)+(w*(s.*P2-F))/(b*M*(s.*P2+F)))*M);
fimplicit(f,[Pi_0 Pi_1 0 20],'r')
hold on
f1 = @(P2,H2) (e*a.*P2.*H2)./(1+q*((s.*P2)/(s.*P2+F)+(w*(s.*P2-F))/(b*M*(s.*P2+F)))*M)- m.*H2;
fimplicit(f1,[Pi_0 Pi_1 0 20],'r')
hold on
%%
[P2, H2] = meshgrid(0:0.01:Pi_0, 0:0.01:Pi_1);
dP2dt = dP2(P2, H2);
dH2dt = dH2(P2, H2);
quiver(P2, H2, dP2dt, dH2dt, 'color', 'b');
0 Commenti
Risposte (1)
Shlok
il 29 Mag 2025
As per my understanding, you want to plot the full phase diagram for your system by showing how the system evolves over time. I suggest following approach to complete the above code:
Hence, the code can be completed by following the above steps. This gives a complete visual representation of both the equilibrium lines and the system’s behavior in each region.
Refer to the following MathWorks documentation links to know more about "meshgrid" and "quiver" functions:
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!