I don't know why my code makes odeToVectorField error
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
syms x(t)
m = 1;
k = 1;
F = 1;
fs = 1;
fk = 1;
[K,E] = ellipke((x / pi-floor(x/pi))*pi);
s = sqrt(2) * E + ( 2 * ellipke(1/2) * floor(x / pi));
r = abs(((cos(x))^2+1)^1.5/sin(x))
Ds = diff(s, t)
D2s = diff(s, t, 2)
dnjstlafur = 0.5 * (((m * Ds^2) / r) + abs(((m * Ds^2) / r - fs) - fs));
ode = m * D2s == sqrt(F^2 - dnjstlafur^2)
[V] = odeToVectorField(ode)
M = matlabFunction(V, 'vars', {'t', 'Y'});
a = 0;
b = 0;
[t, Y]= ode45(M,[0, 10],[a, b / sqrt((2 * k * a)^2 + 1)]);
When running this code, odeToVectorField error occurs... Can anyone help me to solve this problem?
1 Commento
Steven Lord
il 19 Set 2023
Please show the full and exact text of the error message(s) you received when you ran that code (all the text displayed in red in the Command Window).
Risposta accettata
Torsten
il 19 Set 2023
Modificato: Torsten
il 19 Set 2023
From the documentation:
odeToVectorField can convert only quasi-linear differential equations. That is, the highest-order derivatives must appear linearly. For example, odeToVectorField can convert y*y″(t) = –t^2 because it can be rewritten as y″(t) = –t^2/y. However, it cannot convert y″(t)^2 = –t^2 or sin(y″(t)) = –t^2.
0 Commenti
Più risposte (1)
Sam Chak
il 19 Set 2023
Modificato: Sam Chak
il 19 Set 2023
The highest-order derivative
is embedded in
or D2s. Notably, one of the terms in this context is nonlinear, as demonstrated by
below.
below. To successfully utilize the 'odeToVectorField()' function, it's essential for the highest-order derivatives to appear linearly. To address this, I recommend attempting to solve this implicit differential equation using the 'ode15i()' command. See also decic().
syms x(t)
m = 1;
k = 1;
F = 1;
fs = 1;
fk = 1;
[K, E] = ellipke((x/pi - floor(x/pi))*pi);
% Test
% s = x; % this one should work!
s = sqrt(2)*E + 2*ellipke(1/2)*floor(x/pi)
r = abs(((cos(x))^2 + 1)^1.5/sin(x)); % singularity occurs at x(t) = 0
Ds = diff(s, t); % time derivative of a unknown function s
D2s = diff(s, t, 2); % double-dot x is inside here
dnjstlafur = 0.5*((m*Ds^2)/r + abs((m*Ds^2)/r - 2*fs));
eqn = m*D2s == sqrt(F^2 - dnjstlafur^2)
0 Commenti
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!





