Solving First order ODEs simultaneously

3 visualizzazioni (ultimi 30 giorni)
Valerie
Valerie il 28 Set 2023
Commentato: Valerie il 29 Set 2023
Hello, needed help figuring out why I cannot obtain a solution. I'm sure this is a solvable solution however I keep getting a warning saying no solution is found. Is there any mistake I'm making in the code?
Everything is a constant except E, Sr(t) & Er(t).
% Rigorous Solution Case #1
syms Sr(t) Er(t) E;
E = Ea - Er(t);
Unrecognized function or variable 'Ea'.
ode2a = diff(Sr(t),t) == -(k1*(Ea - Er(t))*Sr(t)) + krev1*Er(t);
ode3a = diff(Er,t) == (k1*(Ea - Er(t))*Sr(t)) - (krev1+k2)*Er(t);
odes = [ode2a; ode3a];
cond1 = Sr(0) == Sa;
cond2 = Er(0) == 0;
conds = [cond1; cond2];
[SrSol(t),ErSol(t)] = dsolve(odes,conds)
  4 Commenti
Walter Roberson
Walter Roberson il 28 Set 2023
Ea = 123; %just to have SOME value
k1 = 42; %just to have SOME value
k2 = 13; %just to have SOME value
krev1 = 48; %just to have SOME value
Sa = 5; %just to have SOME value
% Rigorous Solution Case #1
syms Sr(t) Er(t) E;
E = Ea - Er(t);
ode2a = diff(Sr(t),t) == -(k1*(Ea - Er(t))*Sr(t)) + krev1*Er(t);
ode3a = diff(Er,t) == (k1*(Ea - Er(t))*Sr(t)) - (krev1+k2)*Er(t);
eqns = [ode2a; ode3a];
cond1 = Sr(0) == Sa;
cond2 = Er(0) == 0;
conds = [cond1; cond2];
[eqs,vars] = reduceDifferentialOrder(eqns, [Sr(t), Er(t)])
eqs = 
vars = 
[M,F] = massMatrixForm(eqs,vars)
M = 
F = 
f = M\F
f = 
odefun = odeFunction(f,vars)
odefun = function_handle with value:
@(t,in2)[in2(2,:).*4.8e+1-in2(1,:).*5.166e+3+in2(2,:).*in2(1,:).*4.2e+1;in2(2,:).*-6.1e+1+in2(1,:).*5.166e+3-in2(2,:).*in2(1,:).*4.2e+1]
InitConditions = double(rhs(conds)) %watch out for order though!
InitConditions = 2×1
5 0
[T, Y] = ode45(odefun, [0 0.01], InitConditions);
subplot(2,1,1); plot(T, Y(:,1)); title(string(vars(1)))
subplot(2,1,2); plot(T, Y(:,2)); title(string(vars(2)))
%that almost looks like the initial conditions are reversed.
%what happens if we try reversing the conditions?
[Tr, Yr] = ode45(odefun, [0 0.01], flipud(InitConditions));
figure
subplot(2,1,1); plot(Tr, Yr(:,1)); title(string(vars(1)))
subplot(2,1,2); plot(Tr, Yr(:,2)); title(string(vars(2)))
Valerie
Valerie il 28 Set 2023
Thank you so much!

Accedi per commentare.

Risposta accettata

Torsten
Torsten il 28 Set 2023
Spostato: Torsten il 28 Set 2023
I'm quite sure there is no analytical solution for your system of ODEs since the right-hand sides are nonlinear in the unknown functions (term Er(t)*Sr(t)).
  7 Commenti
Sam Chak
Sam Chak il 28 Set 2023
Wolfram Mathematica uses DSolve. 😅
Valerie
Valerie il 29 Set 2023
@Sam Chak I rage quit mathematica this week and is how I eneded up on MATLAB lol but thank you!

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by