# vectorized operations on symbolic functions

19 visualizzazioni (ultimi 30 giorni)
Muhammad Uzair il 19 Feb 2024
Modificato: Torsten circa 24 ore fa
Hi, Can we apply vectorized operations on symbolic functions to avoid loops?
syms x1 x2 x3; % symbolic variables
y = x1^3/3 + x2^2/2 - x3; % symbolic function y
X = rand(500,3) % each row representing a combination of x1 x2 x3
I used for loop, but it is taking more time.
y_values = zeros(size(X,1))
for ii = 1:size(X,1)
y_values(ii) = subs(y, [x1, x2, x3], X(ii,:));
end
I have tried following but since there is inconsistency between sizes of old and new it don't work for me.
y_values = subs(y, [x1, x2, x3], X); % Evaluate the function for all combinations in matrix X
Thanks
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Risposta accettata

Hassaan il 19 Feb 2024
Modificato: Hassaan il 19 Feb 2024
syms x1 x2 x3; % symbolic variables
y = x1^3/3 + x2^2/2 - x3; % symbolic function y
% Generate a random matrix X with 500 rows and 3 columns
X = rand(500, 3); % each row representing a combination of x1 x2 x3
% Evaluate the symbolic function y for each row in X
% Convert the matrix X to a cell array where each row is a separate cell
X_cell = num2cell(X, 2);
% Use cellfun to apply the subs function to each cell (row) of X_cell
y_values = cellfun(@(row) subs(y, [x1, x2, x3], row), X_cell);
% Convert y_values to a double array if needed
y_values = double(y_values);
disp(y_values(1:10))
-0.6359 -0.1162 -0.2625 -0.1633 -0.8502 -0.9749 0.4400 -0.2646 -0.2648 -0.2096
-----------------------------------------------------------------------------------------------------------------------------------------------------
If you find the solution helpful and it resolves your issue, it would be greatly appreciated if you could accept the answer. Also, leaving an upvote and a comment are also wonderful ways to provide feedback.
It's important to note that the advice and code are based on limited information and meant for educational purposes. Users should verify and adapt the code to their specific needs, ensuring compatibility and adherence to ethical standards.
Professional Interests
• Technical Services and Consulting
• Embedded Systems | Firmware Developement | Simulations
• Electrical and Electronics Engineering
Feel free to contact me.
##### 2 CommentiMostra NessunoNascondi Nessuno
Muhammad Uzair il 19 Feb 2024
Thank you for your helpful answer! It has improved my understanding of the topic. I am currently working on optimization using a generic algorithm. Unfortunately, my evaluation function is taking too much time for a single iteration, which is becoming unaffordable due to the high time cost. I suspect that most of the time is consumed in finding the Jacobian matrix value from the symbolic function. I have attempted using cell operations, but since the Jacobian is a square matrix (3x6) in my case, it cannot provide a single output value. I have considered decomposing the matrix into 18 functions and finding their value arrays using cells, but this approach seems computationally expensive. Could you please guide me on a more efficient way to handle this?
Dyuman Joshi il 21 Apr 2024 alle 5:58
Note that using num2cell and subsequently cellfun is not efficient.

Accedi per commentare.

### Più risposte (5)

Matt J il 19 Feb 2024
Modificato: Matt J il 19 Feb 2024
syms x1 x2 x3; % symbolic variables
y = x1^3/3 + x2^2/2 - x3; % symbolic function y
X = rand(500,3); % each row representing a combination of x1 x2 x3
ynum=matlabFunction(y) %convert to a numeric function
ynum = function_handle with value:
@(x1,x2,x3)-x3+x1.^3./3.0+x2.^2./2.0
yvalues=ynum(X(:,1),X(:,2),X(:,3))
yvalues = 500×1
-0.2351 0.0690 -0.4473 -0.5099 -0.6491 -0.5465 -0.7009 -0.3988 0.0451 -0.2412
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

Dyuman Joshi il 19 Feb 2024
Better to use a function handle -
x = rand(500,3);
y = @(x) x(:,1).^3/3 + x(:,2).^2/2 - x(:,3);
out1 = y(x)
out1 = 500×1
-0.3891 0.3727 -0.1355 -0.1076 -0.7001 -0.4155 -0.0613 -0.3197 -0.8788 -0.0225
##### 2 CommentiMostra NessunoNascondi Nessuno
Muhammad Uzair il 19 Feb 2024
Thank you for your assistance. In my current scenario, I have a square matrix that I need to compute for various input values. I’m unsure whether function handles would be suitable for this case. Additionally, the output matrix will be of size 3x6. Is there a way to obtain individual pages of the output matrix? Specifically, I’m aiming for an output structure of 3x6xn, where ‘n’ represents the number of input combinations.
Christine Tobler il 19 Feb 2024
Your best approach then might be to make your input variables have the individual pages already as a third dimension:
x = randn(3, 1, 500);
y = randn(1, 6, 500);
z = x.*y;
size(z)
ans = 1×3
3 6 500
The formula here is of course completely made up, it would depend on what your formula for this 3x6 matrix is.

Accedi per commentare.

Aquatris il 19 Feb 2024
Modificato: Aquatris il 19 Feb 2024
Yet another method, you can define your symbolic parameter as a matrix symbolic
n = 500;
X = sym('X', [500 3]);
% I assume here you want a element wise power ('.^') instead of matrix power
y = X(:,1).^3/3 + X(:,2).^2/2 - X(:,3); % symbolic function y
X_val = rand(500,3); % each row representing a combination of x1 x2 x3
y_values = double(subs(y, X, X_val)) % Evaluate the function for all combinations in matrix X
y_values = 500×1
-0.4390 -0.7329 -0.2091 -0.6554 -0.7112 -0.7845 0.1304 -0.5119 -0.1252 -0.3767
size(y_values)
ans = 1×2
500 1
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

Walter Roberson il 19 Feb 2024
syms x1 x2 x3; % symbolic variables
y = x1^3/3 + x2^2/2 - x3; % symbolic function y
X = rand(500,3); % each row representing a combination of x1 x2 x3
y_values = double(subs(y, {x1, x2, x3}, {X(:,1), X(:,2), X(:,3)}));
y_values(1:5)
ans = 5×1
-0.5223 0.1043 0.4163 -0.1058 -0.3735
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

Torsten 1 giorno fa
Modificato: Torsten circa 24 ore fa
rng("default")
syms x1 x2 x3; % symbolic variables
y = x1^3/3 + x2^2/2 - x3; % symbolic function y
X = rand(500,3) % each row representing a combination of x1 x2 x3
X = 500x3
0.8147 0.5822 0.6312 0.9058 0.5407 0.3551 0.1270 0.8699 0.9970 0.9134 0.2648 0.2242 0.6324 0.3181 0.6525 0.0975 0.1192 0.6050 0.2785 0.9398 0.3872 0.5469 0.6456 0.1422 0.9575 0.4795 0.0251 0.9649 0.6393 0.4211
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
y_values = arrayfun(@(i)double(subs(y,[x1,x2,x3],[X(i,1),X(i,2),X(i,3)])),1:size(X,1))
y_values = 1x500
-0.2814 0.0388 -0.6179 0.0649 -0.5176 -0.5976 0.0616 0.1207 0.3824 0.0827 -0.0344 -0.2115 0.0699 -0.5435 -0.4269 -0.0763 -0.1279 -0.6958 -0.0936 -0.6281 -0.0479 -0.2730 0.1835 -0.0771 0.1207 0.3979 -0.1513 0.1458 -0.5483 -0.3726
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Categorie

Scopri di più su Common Operations in Help Center e File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by