How to add two different surface curves in a single plot?
5 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Deepshikha Deo
il 15 Mar 2024
Commentato: Star Strider
il 20 Mar 2024
I have a bell shaped curve in 3D (generated from curve fitter app) as shown in the figures.
Both are the same curve the only difference is one is without point data and the other has point data.
Problem: I want to add another surface to the same plot for the same data which is at z=1 and parallel to x- and y-axis. Also, is it possible to find the values of major and minor axes of the ellipse formed from the intersection of both the surfaces. Or in other words, the values between the intersection of x and z values of both the curves and the y and z values of both the curves.
I hope I am able to express myself clearly.
Thank you
0 Commenti
Risposta accettata
Star Strider
il 15 Mar 2024
Try this —
‘I want to add another surface to the same plot for the same data which is at z=1 and parallel to x- and y-axis.’
[X,Y] = ndgrid(-3:0.1:3);
f = @(x,y) exp(-(x.^2+(2*y).^2)*0.5);
Z = f(X,Y)*3;
figure
surf(X, Y, Z)
hold on
surf(X, Y, ones(size(Z)), 'FaceColor','r', 'FaceAlpha',0.5, 'EdgeColor','none')
hold off
colormap(turbo)
‘Also, is it possible to find the values of major and minor axes of the ellipse formed from the intersection of both the surfaces.’
figure
[c,h] = contour(X, Y, Z, [1 1]);
axis('equal')
grid
Ax = gca;
Ax.XAxisLocation = 'origin';
Ax.YAxisLocation = 'origin';
elpsfcn = @(b,xy) xy(1,:).^2/b(1)^2 + xy(2,:).^2/b(2)^2 - b(3);
opts = optimoptions('fminunc', 'MaxFunctionEvaluations', 5E+3, 'MaxIterations',1E+4);
[B, fv] = fminunc(@(b) norm(elpsfcn(b,c(:,2:end))), rand(3,1), opts)
fprintf('Semimajor Axis = %.4f\nSemiminor Axis = %.4f\nConstant = %.4f\n', B)
text(-2.5, 2.5, sprintf('$\\frac{x^2}{%.2f^2} + \\frac{y^2}{%.2f^2} = %.4f$',B), 'Interpreter','latex', 'FontSize',16)
.
8 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Linear and Nonlinear Regression in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!