Simulation data Fittting problem

1 visualizzazione (ultimi 30 giorni)
tuhin
tuhin il 1 Apr 2024
Commentato: Torsten il 2 Apr 2024
% Rearranged Data Matrix
dr_data = [2.1714, -0.0059213; 4.3429, 0.017543; 6.5143, 0.086; 8.6857, 0.15588; 10.8571, 0.20539; 13.0286, 0.19694; 15.2, 0.20442; 17.3714, 0.15659; 19.5429, 0.18918; 21.7143, 0.18262; 23.8857, 0.13818; 26.0571, 0.1539; 28.2286, 0.11195; 30.4, 0.12689; 32.5714, 0.068146; 34.7429, 0.028182; 36.9143, 0.013852; 39.0857, 0.039137; 41.2571, 0.00033664; 43.4286, -0.036782; 45.6, -0.043573; 47.7714, -0.060933; 49.9429, -0.030135; 52.1143, -0.043654; 54.2857, -0.039393; 56.4571, -0.030637; 58.6286, -0.03931; 60.8, -0.044883; 62.9714, -0.022349; 65.1429, -0.01046; 67.3143, 0.0014764; 69.4857, 0.012712; 71.6571, 0.0211; 73.8286, 0.02204];
dtheta_data = [2.1714, -0.011123; 4.3429, -0.31772; 6.5143, -0.3745; 8.6857, -0.40013; 10.8571, -0.50617; 13.0286, -0.49345; 15.2, -0.44292; 17.3714, -0.42858; 19.5429, -0.41354; 21.7143, -0.29636; 23.8857, -0.22671; 26.0571, -0.099143; 28.2286, 0.0087113; 30.4, -0.042737; 32.5714, 0.01474; 34.7429, 0.11353; 36.9143, 0.094084; 39.0857, 0.11759; 41.2571, 0.16252; 43.4286, 0.16718; 45.6, 0.22171; 47.7714, 0.25543; 49.9429, 0.25836; 52.1143, 0.23052; 54.2857, 0.12648; 56.4571, 0.15518; 58.6286, 0.20362; 60.8, 0.22967; 62.9714, 0.22242; 65.1429, 0.19043; 67.3143, 0.1749; 69.4857, 0.16304; 71.6571, 0.14256; 73.8286, 0.14299];
% Define parameters
lambda = 1.2;
R = 180; Or can use range anything above 75 to 400
rout = 75;
% Create figure for separate plots
for i = 1:length(kappa_range)
for j = 1:length(theta_k_range)
kappa = kappa_range(i);
theta_k = theta_k_range(j);
% Calculate functions for the chosen kappa and theta_k
omega_m = sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) - sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
omega_p = sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) + sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
A1 = (8 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)) * (-2 * (omega_m^2 + omega_p^2) / (omega_m^2 * omega_p^2) ...
+ rout * omega_m^2 * (kappa^2 - omega_p^4) / (kappa^2 * omega_p * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_p)) ...
- rout * omega_p^2 * (kappa^2 - omega_m^4) / (kappa^2 * omega_m * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_m)));
B1 = (8 * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)) * ...
(2 / (omega_m^2 * omega_p^2 * kappa) + rout / (kappa * omega_m * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_m)) ...
- rout / (kappa * omega_p * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_p)));
% Define functions for fitting
dr = @(r, params) (2 * besselj(1, r * omega_p) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_m^2 * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_p^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m^2 * omega_p .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (2 * besselj(1, r * omega_m) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_p^2 * (kappa^2 - omega_m^4)) ./ (omega_m .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_m^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m * omega_p^2 .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (16 * r * R^2 * (omega_m^2 + omega_p^2) .* (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(omega_p^2 * omega_m^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2));
dtheta = @(r, params) (2 * besselj(1, r * omega_p) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2)) .* ...
(-sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_p^2 * (rout^2 - 4 * R^2)^2) - params(2) * omega_p * (kappa^2 - omega_m^4)))) ...
+ (2 * besselj(1, r * omega_m) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2))) .* ...
(sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_m .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_m^2 * (rout^2 - 4 * R^2)^2) + params(2) * omega_m * (kappa^2 - omega_p^4)))) ...
+ (16 * r * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ ...
(kappa * omega_m^2 * omega_p^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)));
% Fit dr data
p_dr = lsqcurvefit(@(params, r) dr(r, params), [omega_p, A1], dr_data(:, 1), dr_data(:, 2));
% Fit dtheta data
p_dtheta = lsqcurvefit(@(params, r) dtheta(r, params), [omega_p, A1], dtheta_data(:, 1), dtheta_data(:, 2));
% Plot dr and dtheta
figure;
subplot(2, 1, 1);
plot(r, dr(r, p_dr));
hold on;
scatter(dr_data(:, 1), dr_data(:, 2), 'r');
xlabel('r');
ylabel('dr');
title(['kappa = ', num2str(kappa), ', theta_k = ', num2str(theta_k)]);
legend('Fitted Curve', 'Simulation Data');
subplot(2, 1, 2);
plot(r, dtheta(r, p_dtheta));
hold on;
scatter(dtheta_data(:, 1), dtheta_data(:, 2), 'r');
xlabel('r');
ylabel('dtheta');
title(['kappa = ', num2str(kappa), ', theta_k = ', num2str(theta_k)]);
legend('Fitted Curve', 'Simulation Data');
end
end
................................
I want to fit the simulated data points of d_r(r) vs r and d_theta(r ) vs r using the below mentioned analytical solutions. There are two parameters. one is kappa and another one is theta_k. For the fitting the kappa can choose anything positive values the theta_k should be with in 0 to pi/2 any values. If required one can vary R also in between 75 to 1000 or so. That means lambda, kappa, theta_k, and R can be used as parameters to fit the datas. I am not getting any proper fitting of those two plots. I would be appreaciate any help or suggestion about ths fitting.
  3 Commenti
tuhin
tuhin il 1 Apr 2024
Thanks trosten! How to modify it? Can you please check the fitting with those 4 parmters. I checked and not working seems. If you have time please takae a look on the fitting.
tuhin
tuhin il 1 Apr 2024
Modificato: Voss il 1 Apr 2024
% Rearranged Data Matrix
dr_data = [2.1714, -0.0059213; 4.3429, 0.017543; 6.5143, 0.086; 8.6857, 0.15588; 10.8571, 0.20539; 13.0286, 0.19694; 15.2, 0.20442; 17.3714, 0.15659; 19.5429, 0.18918; 21.7143, 0.18262; 23.8857, 0.13818; 26.0571, 0.1539; 28.2286, 0.11195; 30.4, 0.12689; 32.5714, 0.068146; 34.7429, 0.028182; 36.9143, 0.013852; 39.0857, 0.039137; 41.2571, 0.00033664; 43.4286, -0.036782; 45.6, -0.043573; 47.7714, -0.060933; 49.9429, -0.030135; 52.1143, -0.043654; 54.2857, -0.039393; 56.4571, -0.030637; 58.6286, -0.03931; 60.8, -0.044883; 62.9714, -0.022349; 65.1429, -0.01046; 67.3143, 0.0014764; 69.4857, 0.012712; 71.6571, 0.0211; 73.8286, 0.02204];
dtheta_data = [2.1714, -0.011123; 4.3429, -0.31772; 6.5143, -0.3745; 8.6857, -0.40013; 10.8571, -0.50617; 13.0286, -0.49345; 15.2, -0.44292; 17.3714, -0.42858; 19.5429, -0.41354; 21.7143, -0.29636; 23.8857, -0.22671; 26.0571, -0.099143; 28.2286, 0.0087113; 30.4, -0.042737; 32.5714, 0.01474; 34.7429, 0.11353; 36.9143, 0.094084; 39.0857, 0.11759; 41.2571, 0.16252; 43.4286, 0.16718; 45.6, 0.22171; 47.7714, 0.25543; 49.9429, 0.25836; 52.1143, 0.23052; 54.2857, 0.12648; 56.4571, 0.15518; 58.6286, 0.20362; 60.8, 0.22967; 62.9714, 0.22242; 65.1429, 0.19043; 67.3143, 0.1749; 69.4857, 0.16304; 71.6571, 0.14256; 73.8286, 0.14299];
% Best Parameters (Assumed)
best_params = [0.2, 2, pi/10, 200]; % Just for illustration, replace with actual values
% Constants
lambda = best_params(1); % Best lambda value
kappa = best_params(2); % Best kappa value
theta_k = best_params(3); % Best theta_k value
R = best_params(4); % Best R value
rout = 75; % Define rout
% Calculate omega_m and omega_p
omega_m = @(lambda, kappa, theta_k) sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) - sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
omega_p = @(lambda, kappa, theta_k) sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) + sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
% Define A1 and B1
A1 = @(R, kappa, lambda, theta_k, rout) (8 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) * ...
(-2 * (omega_m(lambda, kappa, theta_k)^2 + omega_p(lambda, kappa, theta_k)^2) / (omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) ...
+ rout * omega_m(lambda, kappa, theta_k)^2 * (kappa^2 - omega_p(lambda, kappa, theta_k)^4) / (kappa^2 * omega_p(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_p(lambda, kappa, theta_k))) ...
- rout * omega_p(lambda, kappa, theta_k)^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^4) / (kappa^2 * omega_m(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_m(lambda, kappa, theta_k))));
B1 = @(R, kappa, lambda, theta_k, rout) (8 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) * ...
(2 / (omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2 * kappa) + rout / (kappa * omega_m(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_m(lambda, kappa, theta_k))) ...
- rout / (kappa * omega_p(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_p(lambda, kappa, theta_k))));
% Define functions for fitting
dr = @(r, params) (2 * besselj(1, r * omega_p(lambda, kappa, theta_k)) ./ ((omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) .* ...
((omega_m(lambda, kappa, theta_k)^2 * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_p(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2))) ./ ...
(kappa^2 * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + (B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k) .* sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ kappa))) ...
- (2 * besselj(1, r * omega_m(lambda, kappa, theta_k)) ./ ((omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) .* ...
((omega_p(lambda, kappa, theta_k)^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^4)) ./ (omega_m(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa^2 * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + (B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k) * omega_p(lambda, kappa, theta_k)^2 .* sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ kappa))) ...
- (16 * r * R^2 * (omega_m(lambda, kappa, theta_k)^2 + omega_p(lambda, kappa, theta_k)^2) .* (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(omega_p(lambda, kappa, theta_k)^2 * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)));
dtheta = @(r, params) (2 * besselj(1, r * omega_p(lambda, kappa, theta_k)) ./ ((kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2)) .* ...
(-sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_p(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) * kappa + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) - B1(R, kappa, lambda, theta_k, rout) * omega_p(lambda, kappa, theta_k) * (kappa^2 - omega_m(lambda, kappa, theta_k)^4)))) ...
+ (2 * besselj(1, r * omega_m(lambda, kappa, theta_k)) ./ ((kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2))) .* ...
(sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_m(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) * kappa + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)))) ...
+ (16 * r * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ ...
(kappa * omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)));
% Fit the data using the defined functions with initial guesses from best_params
params_dr = lsqcurvefit(@(params, r) dr(r, params), best_params(1:2), dr_data(:, 1), dr_data(:, 2));
params_dtheta = lsqcurvefit(@(params, r) dtheta(r, params), best_params(1:2), dtheta_data(:, 1), dtheta_data(:, 2));
% Plot the results
figure;
subplot(1, 2, 1);
plot(dr_data(:, 1), dr_data(:, 2), 'ro', 'DisplayName', 'Data');
hold on;
plot(dr_data(:, 1), dr(dr_data(:, 1), params_dr), 'b-', 'DisplayName', 'Fit');
xlabel('r');
ylabel('dr');
legend('Location', 'best');
title('Fitting dr');
subplot(1, 2, 2);
plot(dtheta_data(:, 1), dtheta_data(:, 2), 'ro', 'DisplayName', 'Data');
hold on;
plot(dtheta_data(:, 1), dtheta(dtheta_data(:, 1), params_dtheta), 'b-', 'DisplayName', 'Fit');
xlabel('r');
ylabel('d\theta');
legend('Location', 'best');
title('Fitting d\theta');
Hi Torsten,Please check. still not working. please look into it

Accedi per commentare.

Risposte (1)

Torsten
Torsten il 1 Apr 2024
Modificato: Torsten il 1 Apr 2024
Call lsqcurvefit once as
dr = @(params,r) (2 * besselj(1, r(:,1). * omega_p) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_m^2 * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_p^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m^2 * omega_p .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (2 * besselj(1, r(:,1) * omega_m) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_p^2 * (kappa^2 - omega_m^4)) ./ (omega_m .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_m^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m * omega_p^2 .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (16 * r(:,1) * R^2 * (omega_m^2 + omega_p^2) .* (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(omega_p^2 * omega_m^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2));
dtheta = @(params,r) (2 * besselj(1, r(:,2) * omega_p) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2)) .* ...
(-sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_p^2 * (rout^2 - 4 * R^2)^2) - params(2) * omega_p * (kappa^2 - omega_m^4)))) ...
+ (2 * besselj(1, r(:,2) * omega_m) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2))) .* ...
(sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_m .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_m^2 * (rout^2 - 4 * R^2)^2) + params(2) * omega_m * (kappa^2 - omega_p^4)))) ...
+ (16 * r(:,2) * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ ...
(kappa * omega_m^2 * omega_p^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)));
params = lsqcurvefit(@(params,r)[dr(params,r),dtheta(params,r)],[omega_p, A1],[dr_data(:,1),dtheta_data(:,1)],[dr_data(:,2),dtheta_data(:,2)])
  18 Commenti
tuhin
tuhin il 2 Apr 2024
can you please modify the code and include this within the code?
Torsten
Torsten il 2 Apr 2024
No, sorry. This is too much work to do.

Accedi per commentare.

Categorie

Scopri di più su Parallel Computing Fundamentals in Help Center e File Exchange

Prodotti


Release

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by