How to solve nonlinear equation?

3 visualizzazioni (ultimi 30 giorni)
Semiha
Semiha il 11 Mag 2024
Modificato: Torsten il 11 Mag 2024
Hello,
I wrote the following code to derive an analytical solution to nonlinear equation but it gives an error. Could you please help me to fix it? Or any suggestion to solve in an analytical way. Thanks
syms x(t);
ode = diff(x,t) == -1*(1-abs(x)^2*x-(1-0.5)*x);
cond = x(0) == 1;
xSol(t) = dsolve(ode,cond);
Warning: Unable to find symbolic solution.
t = 0:1:100;
xSols = xSol(t);
plot(t,xSols)
Error using plot
Invalid data argument.
  1 Commento
Torsten
Torsten il 11 Mag 2024
If it helps: You can get t as an analytical function of x, but I think it's not possible to solve for x.

Accedi per commentare.

Risposte (1)

Sam Chak
Sam Chak il 11 Mag 2024
Modificato: Sam Chak il 11 Mag 2024
I'm afraid that the nonlinear differential equation may not have an analytical solution. In such cases, you can utilize the 'ode45' solver to obtain a numerical solution.
ode = @(t, x) 1*(1 - abs(x)^2*x - (1 - 0.5)*x);
tspan = [0 10]; % simulation time
x0 = 1; % initial value
options = odeset('RelTol', 1e-4, 'AbsTol', 1e-6);
[t, x] = ode45(ode, tspan, x0, options);
plot(t, x), grid on, xlabel('t'), ylabel('x(t)')
  6 Commenti
Semiha
Semiha il 11 Mag 2024
I mean diff(x,t) == i(1 - x^3 - 0.5*x) and x(0)=0
Torsten
Torsten il 11 Mag 2024
Modificato: Torsten il 11 Mag 2024
I don't know why for the symbolic solution, not for all t-values solutions for x are returned.
ode = @(t, x) 1i*(1 - x^3 - 0.5*x);
tspan = [0 10]; % simulation time
x0 = 0; % initial value
[t, x] = ode45(ode, tspan, x0);
figure(1)
plot(t, real(x)), grid on, xlabel('t'), ylabel('real(x(t))')
figure(2)
plot(t, imag(x)), grid on, xlabel('t'), ylabel('imag(x(t))')
syms x(t) u
ode = diff(x,t) == 1i*(1 - x^3 - 0.5*x);
cond = x(0) == 0;
xSol = dsolve(ode, cond, 'Implicit', true);
xSol = subs(xSol,x,u);
vpasolve(subs(xSol,t,1),u)
ans = 

Accedi per commentare.

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by