I would like to plot an interpolated 3d Surface between two faces, i.e. the third face of a truncated cone. my plot isn't working but I'm not sure what is wrong

1 visualizzazione (ultimi 30 giorni)
r1=0.5;
% t1=[(0:0.1:2*pi),0];
t1=0:0.1:2*pi;
X1=r1*cos(t1);
Y1=r1*sin(t1);
n1=numel(X1);
Z1=zeros(1,n1);
DT=delaunay(X1,Y1);
trisurf(DT,X1,Y1,Z1);
hold;
r2=0.25;
% t2=[(0:0.1:2*pi),0];
t2=0:0.1:2*pi;
X2=r2*cos(t2);
Y2=r2*sin(t2);
n2=numel(X2);
Z2=200*ones(1,n2);
DT2=delaunay(X2,Y2);
trisurf(DT2,X2,Y2,Z2);
X= [X1,X2];
Y=[Y1,Y2];
Z=[Z1,Z2];
[xq,yq]=meshgrid(X,Y);
zq=ones(126).*Z;
surf(xq,yq,zq);

Risposta accettata

Star Strider
Star Strider il 19 Giu 2024
TThis does not look like a cone to me at all.
What do you want to do?
r1=0.5;
% t1=[(0:0.1:2*pi),0];
t1=0:0.1:2*pi;
X1=r1*cos(t1);
Y1=r1*sin(t1);
n1=numel(X1);
Z1=zeros(1,n1);
DT=delaunay(X1,Y1);
trisurf(DT,X1,Y1,Z1);
hold;
Current plot held
r2=0.25;
% t2=[(0:0.1:2*pi),0];
t2=0:0.1:2*pi;
X2=r2*cos(t2);
Y2=r2*sin(t2);
n2=numel(X2);
Z2=200*ones(1,n2);
DT2=delaunay(X2,Y2);
trisurf(DT2,X2,Y2,Z2);
X= [X1,X2];
Y=[Y1,Y2];
Z=[Z1,Z2];
[xq,yq]=meshgrid(X,Y);
zq=ones(126).*Z;
surf(xq,yq,zq);
view(-27,30)
My approach to a truncated cone (assuming my interpretation matches yours), woudl be something like this —
r = [1; 2]; % Radius Multipliers
h = [0; 3]; % Height Multipliers
a = linspace(0, 2*pi); % Angle Vector
cyl = [cos(a); sin(a)] % Circles
cyl = 2x100
1.0000 0.9980 0.9920 0.9819 0.9679 0.9501 0.9284 0.9029 0.8738 0.8413 0.8053 0.7660 0.7237 0.6785 0.6306 0.5801 0.5272 0.4723 0.4154 0.3569 0.2969 0.2358 0.1736 0.1108 0.0476 -0.0159 -0.0792 -0.1423 -0.2048 -0.2665 0 0.0634 0.1266 0.1893 0.2511 0.3120 0.3717 0.4298 0.4862 0.5406 0.5929 0.6428 0.6901 0.7346 0.7761 0.8146 0.8497 0.8815 0.9096 0.9341 0.9549 0.9718 0.9848 0.9938 0.9989 0.9999 0.9969 0.9898 0.9788 0.9638
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
figure
surf(r*cyl(1,:), r*cyl(2,:), h.*[ones(size(a)); ones(size(a))], 'FaceColor','b', 'FaceAlpha',0.5) % Plot Cone
hold on
patch((r(1)*cyl(1,:)), (r(1)*cyl(2,:)), ones(size(a))*h(1), 'r') % Plot Lower Cap
patch(r(2)*cyl(1,:), r(2)*cyl(2,:), ones(size(a))*h(2), 'g') % Plot Upper Cap
hold off
grid on
axis('equal')
view(-27,30)
This is my interpretation of a truncated cone with end-caps.
.
  6 Commenti
Hayat
Hayat il 20 Giu 2024
thanks! i got the top cap with the x,y,z delaunay so looks like we are on the right track. thank you!

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by