Problem with Patch, trying to fill a surface based on points.

4 visualizzazioni (ultimi 30 giorni)
I got an output of a few X Y and Z points, which I want to create into a patch object.
The output however, is more like a sliced potato.
Copy the code below, note that only the last bit about XXX, YYY and ZZZ give the coordinates. any idea how to create a nice consistent shape?
Thanks in advance guys!
PS; Related question; How can I plot a patch object? Say I created a patch object A=patch(x,y,z,1)
Now, after editing it (A.Vertices=[..,..,..]) I want to plot the object in figure(X). What would be the command to get it there?
clc;clear all;close all
r=20;
x=4;
y=6;
z=8;
x0=3;
y0=8;
z0=8;
FOV=pi;
x1=[ x/(x^2 + y^2 + z^2)^(1/2), y/(x^2 + y^2 + z^2)^(1/2), z/(x^2 + y^2 + z^2)^(1/2)]; %<--klopt.
yz=null(x1).'; %find the null spaces of normalised V
xyz=[x1;yz]; %The rows of this matrix are the axes of a normalised
U=xyz(2,:)';
W=xyz(3,:)';%U and W are a ortogonal normal basis for normalised A
a=U(1);b=U(2);c=U(3);d=W(1);e=W(2);f=W(3);
n=1;
tic
for FOV=0:0.1*pi:FOV
for alpha=0:0.2*pi:2*pi
XXX(n)=x0 - ((x/(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*(d*cos(alpha) + a*sin(alpha)))*(a*d*x*x0 + a*d*y*y0 + a*d*z*z0 - a*d*(abs(y + tan(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(z + tan(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(a*d*x + a*tan(FOV/2)*cos(conj(alpha))*abs(d)^2*(x^2 + y^2 + z^2)^(1/2) + d*tan(FOV/2)*sin(conj(alpha))*abs(a)^2*(x^2 + y^2 + z^2)^(1/2))^2/(abs(a)^2*abs(d)^2*(x^2 + y^2 + z^2)))^(1/2)*(x^2 + y^2 + z^2)^(1/2)*(r^2 - x0^2 - y0^2 - z0^2 + (abs(a)^2*abs(d)^2*(a*d*x*x0*cos(FOV/2) + a*d*y*y0*cos(FOV/2) + a*d*z*z0*cos(FOV/2) + a*x0*sin(FOV/2)*cos(conj(alpha))*abs(d)^2*(x^2 + y^2 + z^2)^(1/2) + d*x0*sin(FOV/2)*sin(conj(alpha))*abs(a)^2*(x^2 + y^2 + z^2)^(1/2) + a*d*y0*sin(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + a*d*z0*sin(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + a*d*y0*sin(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2) + a*d*z0*sin(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2))^2)/(a^2*d^2*(abs(a*d*x*cos(FOV/2) + a*sin(FOV/2)*cos(conj(alpha))*abs(d)^2*(x^2 + y^2 + z^2)^(1/2) + d*sin(FOV/2)*sin(conj(alpha))*abs(a)^2*(x^2 + y^2 + z^2)^(1/2))^2 + abs(y*cos(FOV/2) + sin(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + sin(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2))^2*abs(a)^2*abs(d)^2 + abs(z*cos(FOV/2) + sin(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + sin(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2))^2*abs(a)^2*abs(d)^2)))^(1/2) + a*x0*tan(FOV/2)*cos(conj(alpha))*abs(d)^2*(x^2 + y^2 + z^2)^(1/2) + d*x0*tan(FOV/2)*sin(conj(alpha))*abs(a)^2*(x^2 + y^2 + z^2)^(1/2) + a*d*y0*tan(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + a*d*z0*tan(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + a*d*y0*tan(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2) + a*d*z0*tan(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2)))/(a*d*(abs(y + tan(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(z + tan(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(a*d*x + a*tan(FOV/2)*cos(conj(alpha))*abs(d)^2*(x^2 + y^2 + z^2)^(1/2) + d*tan(FOV/2)*sin(conj(alpha))*abs(a)^2*(x^2 + y^2 + z^2)^(1/2))^2/(abs(a)^2*abs(d)^2*(x^2 + y^2 + z^2)))*(x^2 + y^2 + z^2)^(1/2));
YYY(n)= y0 - ((y/(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*(e*cos(alpha) + b*sin(alpha)))*(b*e*x*x0 + b*e*y*y0 + b*e*z*z0 - b*e*(abs(x + tan(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(z + tan(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(b*e*y + b*tan(FOV/2)*cos(conj(alpha))*abs(e)^2*(x^2 + y^2 + z^2)^(1/2) + e*tan(FOV/2)*sin(conj(alpha))*abs(b)^2*(x^2 + y^2 + z^2)^(1/2))^2/(abs(b)^2*abs(e)^2*(x^2 + y^2 + z^2)))^(1/2)*(x^2 + y^2 + z^2)^(1/2)*(r^2 - x0^2 - y0^2 - z0^2 + (abs(b)^2*abs(e)^2*(b*e*x*x0*cos(FOV/2) + b*e*y*y0*cos(FOV/2) + b*e*z*z0*cos(FOV/2) + b*y0*sin(FOV/2)*cos(conj(alpha))*abs(e)^2*(x^2 + y^2 + z^2)^(1/2) + e*y0*sin(FOV/2)*sin(conj(alpha))*abs(b)^2*(x^2 + y^2 + z^2)^(1/2) + b*e*z0*sin(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2) + b*e*x0*sin(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + b*e*z0*sin(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + b*e*x0*sin(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2))^2)/(b^2*e^2*(abs(b*e*y*cos(FOV/2) + b*sin(FOV/2)*cos(conj(alpha))*abs(e)^2*(x^2 + y^2 + z^2)^(1/2) + e*sin(FOV/2)*sin(conj(alpha))*abs(b)^2*(x^2 + y^2 + z^2)^(1/2))^2 + abs(x*cos(FOV/2) + sin(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + sin(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2))^2*abs(b)^2*abs(e)^2 + abs(z*cos(FOV/2) + sin(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + sin(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2))^2*abs(b)^2*abs(e)^2)))^(1/2) + b*y0*tan(FOV/2)*cos(conj(alpha))*abs(e)^2*(x^2 + y^2 + z^2)^(1/2) + e*y0*tan(FOV/2)*sin(conj(alpha))*abs(b)^2*(x^2 + y^2 + z^2)^(1/2) + b*e*z0*tan(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2) + b*e*x0*tan(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + b*e*z0*tan(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + b*e*x0*tan(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2)))/(b*e*(abs(x + tan(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(z + tan(FOV/2)*cos(conj(alpha))*conj(f)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(c)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(b*e*y + b*tan(FOV/2)*cos(conj(alpha))*abs(e)^2*(x^2 + y^2 + z^2)^(1/2) + e*tan(FOV/2)*sin(conj(alpha))*abs(b)^2*(x^2 + y^2 + z^2)^(1/2))^2/(abs(b)^2*abs(e)^2*(x^2 + y^2 + z^2)))*(x^2 + y^2 + z^2)^(1/2));
ZZZ(n)= z0 - ((z/(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*(f*cos(alpha) + c*sin(alpha)))*(c*f*x*x0 + c*f*y*y0 + c*f*z*z0 - c*f*(abs(x + tan(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(y + tan(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(c*f*z + c*tan(FOV/2)*cos(conj(alpha))*abs(f)^2*(x^2 + y^2 + z^2)^(1/2) + f*tan(FOV/2)*sin(conj(alpha))*abs(c)^2*(x^2 + y^2 + z^2)^(1/2))^2/(abs(c)^2*abs(f)^2*(x^2 + y^2 + z^2)))^(1/2)*(x^2 + y^2 + z^2)^(1/2)*(r^2 - x0^2 - y0^2 - z0^2 + (abs(c)^2*abs(f)^2*(c*f*x*x0*cos(FOV/2) + c*f*y*y0*cos(FOV/2) + c*f*z*z0*cos(FOV/2) + c*z0*sin(FOV/2)*cos(conj(alpha))*abs(f)^2*(x^2 + y^2 + z^2)^(1/2) + f*z0*sin(FOV/2)*sin(conj(alpha))*abs(c)^2*(x^2 + y^2 + z^2)^(1/2) + c*f*y0*sin(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2) + c*f*x0*sin(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + c*f*y0*sin(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + c*f*x0*sin(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2))^2)/(c^2*f^2*(abs(c*f*z*cos(FOV/2) + c*sin(FOV/2)*cos(conj(alpha))*abs(f)^2*(x^2 + y^2 + z^2)^(1/2) + f*sin(FOV/2)*sin(conj(alpha))*abs(c)^2*(x^2 + y^2 + z^2)^(1/2))^2 + abs(x*cos(FOV/2) + sin(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + sin(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2))^2*abs(c)^2*abs(f)^2 + abs(y*cos(FOV/2) + sin(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + sin(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2))^2*abs(c)^2*abs(f)^2)))^(1/2) + c*z0*tan(FOV/2)*cos(conj(alpha))*abs(f)^2*(x^2 + y^2 + z^2)^(1/2) + f*z0*tan(FOV/2)*sin(conj(alpha))*abs(c)^2*(x^2 + y^2 + z^2)^(1/2) + c*f*y0*tan(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2) + c*f*x0*tan(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + c*f*y0*tan(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + c*f*x0*tan(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2)))/(c*f*(abs(x + tan(FOV/2)*cos(conj(alpha))*conj(d)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(a)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(y + tan(FOV/2)*cos(conj(alpha))*conj(e)*(x^2 + y^2 + z^2)^(1/2) + tan(FOV/2)*sin(conj(alpha))*conj(b)*(x^2 + y^2 + z^2)^(1/2))^2/(x^2 + y^2 + z^2) + abs(c*f*z + c*tan(FOV/2)*cos(conj(alpha))*abs(f)^2*(x^2 + y^2 + z^2)^(1/2) + f*tan(FOV/2)*sin(conj(alpha))*abs(c)^2*(x^2 + y^2 + z^2)^(1/2))^2/(abs(c)^2*abs(f)^2*(x^2 + y^2 + z^2)))*(x^2 + y^2 + z^2)^(1/2));
n=n+1;
end
end
Patch=patch(XXX,YYY,ZZZ,1)
  4 Commenti
luc
luc il 29 Apr 2015
Modificato: luc il 29 Apr 2015
Okay, thanks for the advice :) I'll post the XXX YYY and ZZZ code then.
To answer pfd's questions: 1) Yes it is supposed to look like a dome
2) Patch draws a filled 2D polygon, but it draws the 2D polygon in 2D. If I would add enough points the shape will eventually look just like a dome. So I want to draw this complex 3D outer shell. out of multiple triangles.
Maybe a more general question would be; I have a set of points in X Y and Z, I want to use patch to draw a "terrain plot" using those points.
3) Thanks, I will.
luc
luc il 29 Apr 2015
Added the matrices, so now the question boils down to:
I want to create a dome shape from these points using the patch command, what would be the best way to start?
Data attached.
Patch(XXX,YYY,ZZZ,1)

Accedi per commentare.

Risposta accettata

luc
luc il 1 Mag 2015
I figured it out, I use a loop to get some double points in my patch object. So each ring gets a double ring. I then add all the ring points.
Here's the code.
for FOV=0:0.1*pi:FOV
for alpha=0:0.1*pi:2*pi
XXX=code
YYY=code
ZZZ=code
n=n+1;
end
end
scatter3(XXX,YYY,ZZZ)
hold on
[nietnodig,sizefov]=size([0:0.1*pi:FOV]);
[nietnodig,sizealpha]=size(0:0.1*pi:2*pi);
m=1;
for m=1:sizefov-1
XXX_s=XXX(((m-1)*sizealpha)+1:(m+1)*sizealpha);
YYY_s=YYY(((m-1)*sizealpha)+1:(m+1)*sizealpha);
ZZZ_s=ZZZ(((m-1)*sizealpha)+1:(m+1)*sizealpha);
Patch_s=patch(XXX_s,YYY_s,ZZZ_s,1);
if m==1
fv_combined1=Patch_s
end
nv1=length(fv_combined1.Vertices);
fv_combined1.Vertices=[fv_combined1.Vertices;Patch_s.Vertices];
fv_combined1.Faces=[fv_combined1.Faces; Patch_s.Faces+nv1];
end

Più risposte (1)

pfb
pfb il 29 Apr 2015
Not sure you can do that with the patch command "as it is".
You have to create some sort of mesh.
Something nicer is obtained with trisurf or trimesh.
tri = delaunay(XXX,YYY);
trisurf(tri,XXX,YYY,ZZZ);
It's not optimal yet, but I guess it is closer to what you actually want. I think it's also a matter of ordering of the points.
  1 Commento
luc
luc il 1 Mag 2015
Hmm.. any idea on how to order the points? I was thinking of doing a mesh with a few double points...

Accedi per commentare.

Categorie

Scopri di più su Lighting, Transparency, and Shading in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by