Guideline for implementing PID and saturation
9 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti



I have the following model where I have as a setpoint a step input with constant value 10 and stepme 0 and used initially a step input of value 600 in order to approximate an impulse; which are now the PID and saturation block guidelines in order to successfully track the setpoint (R=10)? How can I achieve an oscillating behaviour around the setpoint?
5 Commenti
Risposte (2)
Sam Chak
il 4 Giu 2025
Hi @Jo
This system is somewhat difficult to control. I have not explored how you successfully track the setpoint using a gain-scheduling control approach. If a relatively slow response is acceptable, it may be possible to design a series of gain schedules. Would you mind sharing how you achieved that?
In my control design in MATLAB, I assume that all system states are measurable for simplicity. I have not tested it in Simulink, but in theory, it should work as well if the system states are properly estimated using an observer.
%% settings
format long g
sympref("HeavisideAtOrigin", 1);
%% call ode45
[t, x] = ode45(@ode, [0 30], [1; 1; 1]);
y = zeros(1, numel(t));
for j = 1:numel(t)
[~, y(j)] = ode(t(j), x(j,:).');
end
%% plot result
figure
plot(t, y)
grid on
xlabel({'$t$'}, 'interpreter', 'latex')
ylabel({'$y(t)$'}, 'interpreter', 'latex')
title({'System''s Output'}, 'interpreter', 'latex')
%% steady-state value
y(end)
%% Lur'e System - Nonlinear feedback with Linear Time-invariant System
function [dx, y] = ode(t, x)
% Parameters
wn = 0.0307;
a1 = 40*wn^3;
a2 = 54*wn^2;
a3 = 15*wn;
B = a1;
gamma = 1.8499;
% Nonlinear Output, y(t)
y = 100/(abs(real(x(1)))^gamma + 1);
dy = - (100*gamma*abs(real(x(1)))^(gamma - 1))/(abs(real(x(1)))^gamma + 1)^2;
d2y = (100*gamma*abs(real(x(1)))^(gamma - 2)*(abs(real(x(1)))^gamma + gamma*(abs(real(x(1)))^gamma - 1) + 1))/(abs(real(x(1)))^gamma + 1)^3;
dx3 = - a1*x(1) - a2*x(2) - a3*x(3);
yinv = abs(100*abs(real(x(1))) - 1)^(1/gamma);
% Controller
k = 1/1.000014303460806;
ref = 10; % setpoint
yref = k*ref;
dyref = 0;
d2yref = 0;
d3yref = 0;
% u = heaviside(t);
u = (yinv*(d3yref - 3*(dy*x(2) + y*x(3) - d2yref) - 3*(y*x(2) - dyref) - (y - yref) - d2y*x(2) - 2*dy*x(3)) - dx3)/(2*B);
% Linear System
dx = zeros(3, 1);
dx(1) = x(2);
dx(2) = x(3);
dx(3) = B*u - a1*x(1) - a2*x(2) - a3*x(3);
end
0 Commenti
Sam Chak
il 5 Giu 2025
Hi @Jo
I revisited your Lur'e system and designed a combined PID controller with a lead compensator in Simulink to regulate the nonlinear process variable at the desired setpoint.
Sometimes, I find myself clouded by the overkill math I derived in MATLAB. The graphical model in Simulink allows me to "see" where the problem lies, enabling me to attack its weak points.


0 Commenti
Vedere anche
Categorie
Scopri di più su PID Controller Tuning in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



