symbolic calculations for physical system doesn't give apropriated answer.

4 visualizzazioni (ultimi 30 giorni)
Hello,
I'm trying to solve the equations of motion of a triple inverted pendulum with matlab as in figure below
my code is as follows :
clear variables
digits(5);
syms phi1(t)
syms phi2(t)
syms phi3(t)
syms s(t)
syms u(t)
d1=0.215;
d2=0.002;
d3=0.002;
J1=0.013;
J2=0.024;
J3=0.018;
a1=0.215;
a2=0.269;
a3=0.226;
g=9.81;
l1=0.323;
l2=0.419;
m1=0.876;
m2=0.938;
m3=0.553;
mc=1; %actually we I didn't find the mass of the cart.
R=0.5*d1*diff(phi1,t)^2+0.5*d2*(diff(phi2,t)-diff(phi1,t))^2+0.5*d3*(diff(phi3,t)-diff(phi2,t))^2;
q=[phi1;phi2;phi3;s];
qdot=diff(q,t);
q=formula(q);
qdot=formula(qdot);
pc0=[s;0]; %position of the cart
pc1=[s-a1*sin(phi1);a1*cos(phi1)];
pc2=[s-l1*sin(phi1)-a2*sin(phi2);l1*cos(phi1)+a2*cos(phi2)];
pc3=[s-l1*sin(phi1)-l2*sin(phi2)-a3*sin(phi3);l1*cos(phi1)+l2*cos(phi2)+a3*cos(phi3)];
yc1=[0,1]*pc1;
yc2=[0,1]*pc2;
yc3=[0,1]*pc3;
vc1=diff(pc1,t);
vc2=diff(pc2,t);
vc3=diff(pc3,t);
vc1Norm2=transpose(vc1)*vc1;
vc1Norm2=simplify(vc1Norm2);
vc2Norm2=transpose(vc2)*vc2;
vc2Norm2=simplify(vc2Norm2);
vc3Norm2=transpose(vc3)*vc3;
vc3Norm2=simplify(vc3Norm2);
V=g*(m1*yc1+m2*yc2+m3*yc3);
T=0.5*(mc*diff(s,t)^2+m1*vc1Norm2+m2*vc2Norm2+m3*vc3Norm2+J1*diff(phi1,t)^2+J2*diff(phi2,t)^t+J3*diff(phi3,t)^2);
T=simplify(T);
L=T-V;
L=simplify(L);
R=0.5*(d1*diff(phi1,t)^2+d2*(diff(phi2,t)-diff(phi1,t))^2+d3*(diff(phi3,t)-diff(phi2,t))^2);
eulerLagrange=@(f,t,x,xd) diff(diffDepVar(f,xd),t)-diffDepVar(f,x)+diffDepVar(R,xd);
dL1=eulerLagrange(L,t,phi1,diff(phi1,t));
eqn1=dL1==0;
eqn1=simplify(eqn1);
dL2=eulerLagrange(L,t,phi2,diff(phi2,t));
eqn2=dL2==0;
eqn2=simplify(eqn2);
dL3=eulerLagrange(L,t,phi3,diff(phi3,t));
eqn3=dL3==0;
eqn3=simplify(eqn3);
eqn4=u==diff(diff(s,t),t);
[V,Y]=odeToVectorField(eqn1,eqn2,eqn3,eqn4);
V=subs(V,u,0);
f=matlabFunction(V,'vars',{'t','Y'});
tspan=[0,1];
y0=[0;0;0;0;0;0;pi/2;0];
[t,y]=ode45(f,tspan,y0);
for some reason, when I plot the answer y is a matrix containing more NaN than anything else. I thought that this may be due to the fact that f contains very big values (ex : 10^22). What do you think?

Risposta accettata

Mischa Kim
Mischa Kim il 24 Ott 2016
Check out the Euler-Lagrange tool package on File Exchange.
  4 Commenti
edamondo
edamondo il 25 Ott 2016
I have tried this but if I type in the first exmample
syms g m x dx y dy z dz
L = m*(dx^2 + dy^2 + dz^2)/2 - m*g*z;
X = {x dx y dy z dz};
Q_i = {0 0 0}; Q_e = {0 0 0};
R = 0;
par = {g m};
VF = EulerLagrange(L,X,Q_i,Q_e,R,par);
I get the error:
Undefined function or variable 't'.
Error in EulerLagrange>@(ii)symfun(['q',int2str(ii),'(t)'],t)
Error in EulerLagrange (line 86) qt = arrayfun(@(ii) symfun(['q' int2str(ii) '(t)'],t),1:numcoor,'UniformOutput',false);
edamondo
edamondo il 25 Ott 2016
Modificato: edamondo il 25 Ott 2016
Apparently I changed the code by error. It is working now

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by