How can I create a modified curve fitting function?
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Hi,
i want to fit a recovery curve of my experiment to the following expression:
F(t)=k*exp(-D/2t)[I0(D/2t)+I1(D/2t)]
where I0 and I1 are the modified Bessel fundtions of the first kind of zero and first order. I want to determine D and k.
Is there any simple solution for this problem?
Thanks for helping
5 Commenti
Risposte (2)
John D'Errico
il 19 Mar 2017
Modificato: John D'Errico
il 19 Mar 2017
Yes. Of course it is possible to do this. What toolbox do you have available? It sounds like the curve fitting TB is what you have. READ THE HELP. Look at the examples provided.
You said modified first kind Bessel, so you would use besseli. I'll get you started:
I0 = @(z) besseli(0,z);
I1 = @(z) besseli(1,z);
F = @(P,t) P(1)*exp(-P(2)/2*t).*(I0(P(2)/2*t)+I1(P(2)/2*t));
The curve fitting toolbox should be able to use this, as well as nlinfit and lsqcurvefit.
Note that I made the assumption that D/2t should be interpreted as (D/2)*t, NOT as D/(2*t).
3 Commenti
Sung YunSing
il 18 Ago 2021
Hi just want to mention that if you were working at FRAP, maybe D/(2*t) is more conform to the origin FRAP equation.
Vedere anche
Categorie
Scopri di più su Calculus in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!