How to solve this system using ODE45?

8 visualizzazioni (ultimi 30 giorni)
The ODE system
dx/dt = -8/3 x + yz;
dy/dt = -10y + 10z;
dz/dt = -x*y + 28y - z when t=[0,50]
I only learned how to solve one equation each but,
I wanna solve this system using ODE45 on matlab
please help me how to make the script.

Risposta accettata

Star Strider
Star Strider il 24 Mar 2017
You first must assign ‘x’, ‘y’, and ‘z’ to a vector, then create the appropriate first-order differential equations with respect to each variable.
Example:
% % % MAPPING: x = v(1), y = v(2), z = v(3)
% dv(1,:) = -8/3.*v(1) + v(2).*v(3);
% dv(2,:) = -10*v(2) + 10*v(3);
% dv(3,:) = -v(1).*v(2) + 28*v(2) - v(3);
v_fcn = @(t,v) [-8/3.*v(1) + v(2).*v(3); -10*v(2) + 10*v(3); -v(1).*v(2) + 28*v(2) - v(3)];
ts = [0 50];
init_cond = [10; 10; 10];
[T,V] = ode45(v_fcn, ts, init_cond);
figure(1)
plot(T,V)
grid
I used an anonymous function here, simply for convenience. See the section on ‘Anonymous Functions’ in Function Basics for details on how to write them and use them.

Più risposte (1)

Sameer kumar nayak
Sameer kumar nayak il 25 Gen 2020
7d²x/dt²+3dx/dt+5x+6=0 how can we solve using matlab using ode45??
  1 Commento
Steven Lord
Steven Lord il 25 Gen 2020
See the "Nonstiff van der Pol Equation" example on this documentation page. You should be able to use the same techniques as that example to solve your ODE.

Accedi per commentare.

Prodotti

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by