Neural Network Toolbox Turn off Early Stopping
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hi,
I need to make a training algorithm such as trainlm or traingd overfit. Therefore I want to turn off early stopping. The following is my code:
net = feedforwardnet(neurons,trainalgo);
net = init(net);
%net.trainParam.max_fail = max_fail;
net.divideFcn = 'dividerand';
net.divideParam.trainRatio=trainRatio;
net.divideParam.valRatio=valRatio;
net.divideParam.testRatio=testRatio;
net.trainParam.epochs = epochs;
net.trainParam.min_grad=0;
% Train network and retrieve mse's.
[net tr] = train(net, x, y);
trE = tr.perf;
vE = tr.vperf;
tE = tr.tperf;
I want the min_grad to be irrelevant. Even if it's zero I still want it to continue to train until epoch 1000. How do I do that?
Thanks
0 Commenti
Risposte (2)
Greg Heath
il 7 Apr 2017
Set the training goal to 0
and
set the allowed no. of validation increases to inf.
Hope this helps.
Thank you for formally accepting my answer
Greg
0 Commenti
orlem lima dos santos
il 30 Gen 2018
Modificato: orlem lima dos santos
il 30 Gen 2018
hello there is no straightforward way to do this, but you can
1. set trainRatio = 1, valRatio=0 and testRatio=0 (this stops the validation checks).
2. set the training goal to 0.
3. set net.trainParam.min_grad=1e-100; (the gradient is never going to achieve 1e-100)
this only the only way to the training stop is when it achieves the maximum number of epochs (net.trainParam.epochs)
I hope it helps
0 Commenti
Vedere anche
Categorie
Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!