Explicit solution could not be found.. > In dsolve at 194

2 visualizzazioni (ultimi 30 giorni)
here is my code :
>>sums u(t) v(t)
>>ode1= diff(u)==u^2/v - u
>>ode2= diff(v) == u^2-v
>>odes=[ode1;ode2]

Risposta accettata

Star Strider
Star Strider il 1 Giu 2017
An analytic (symbolic) solution does not exist. You must us a numeric solver.
The Code
syms T t u(t) v(t) u0 v0 Y
Du = diff(u);
Dv = diff(v);
ode1 = Du == u^2/v - u;
ode2 = Dv == u^2-v;
[ode_vf, ode_subs] = odeToVectorField(ode1,ode2);
ode_fcn = matlabFunction(ode_vf, 'vars',{T,Y});
tspan = linspace(0, 10, 150);
icv = [0; 0]+sqrt(eps);
[t,y] = ode45(ode_fcn, tspan, icv);
figure(1)
plot(t, y)
grid
  23 Commenti
siddharth tripathi
siddharth tripathi il 9 Lug 2017
Hi star ! I hope you are doing good.
Can you please tell me how i can get graphs of u vs t and v vs t individually from this code ?
Thanks!
Star Strider
Star Strider il 9 Lug 2017
My pleasure.
Here you go:
syms T t u(t) v(t) u0 v0 Y
Du = diff(u);
Dv = diff(v);
ode1 = Du == u^2/v - u;
ode2 = Dv == u^2-v;
[ode_vf, ode_subs] = odeToVectorField(ode1,ode2);
ode_fcn = matlabFunction(ode_vf, 'vars',{T,Y});
tspan = linspace(0, 10, 250);
icv = [0; 0]+sqrt(eps);
[t,y] = ode45(ode_fcn, tspan, icv);
figure(1)
plot(t, y)
grid
lgndc = sym2cell(ode_subs); % Get Substituted Variables
lgnds = regexp(sprintf('%s\n', lgndc{:}), '\n','split'); % Create Cell Array
legend(lgnds(1:end-1), 'Location','NW', 'Location','NE') % Display Legend
figure(2)
subplot(2,1,1)
plot(t, y(:,1))
title([lgnds{1} '(t)'])
xlabel('\bft\rm')
ylabel('\bfAmplitude\rm')
subplot(2,1,2)
plot(t, y(:,2))
title([lgnds{2} '(t)'])
xlabel('\bft\rm')
ylabel('\bfAmplitude\rm')

Accedi per commentare.

Più risposte (1)

Walter Roberson
Walter Roberson il 2 Giu 2017
Making the assumption that you made a minor typing mistake in entering your question, and that you are asking about
syms u(t) v(t)
ode1= diff(u)==u^2/v - u;
ode2= diff(v) == u^2-v;
odes = [ode1;ode2];
dsolve(odes)
then MATLAB is not able to provide analytic solutions. However, two analytic solutions exist:
1)
u(t) = 0
v(t) = C1 * exp(-t)
where C1 is an arbitrary constant whose value depends upon the initial conditions
2)
u(t) = RootOf(-Intat(-LambertW(-C1*exp(a_)/a_)/(a_*(LambertW(-C1*exp(a_)/a_)+1)), a_ = Z_) + t + C2)
v(t) = u(t)^2/(diff(u(t), t)+u(t))}
that ugly formula for u(t) says that there is a particular function involving a ratio of LambertW formulas, and that for any given t, u(t) is the value such that the integral of the ratio, evaluate at that value, is 0.
This is ugly. But it does provide a path to an analytic solution, of sorts. But it is beyond the capacity of MATLAB.

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by