Solve for a normaliztion constant in MATLAB

4 visualizzazioni (ultimi 30 giorni)
Sergio Manzetti
Sergio Manzetti il 3 Gen 2018
Commentato: Birdman il 3 Gen 2018
Hi, I have the following code:
if true
% code
end
syms h g x C n L p e E C m N
y = - (exp(-(x*(g*1i + (- 2*g^2 + E)^(1/2)))/h)*(g*1i - (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2)) + (exp(-(x*(g*1i - (- 2*g^2 + E)^(1/2)))/h)*(g*1i + (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2))
z = - (exp(-(x*(g*(-i) + (- 2*g^2 + E)^(1/2)))/h)*(g*(-i) - (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2)) + (exp(-(x*(g*(-i) - (- 2*g^2 + E)^(1/2)))/h)*(g*(-i) + (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2))
prod=@(x)y(x).*z(x)*N^2
Nsol = solve(int(prod,x,0,2*pi)-1==0,N)
A=vpa(Nsol)
all constants are defined (not visible to save space), and I would like to solve for N, as can be seen in prod line, but this does not work.
This gives however:
Error in sym>tomupad (line 1233) x = funchandle2ref(x);
Error in sym (line 199) S.s = tomupad(x);
Error in sym/int (line 63) f = sym(f);
Error in Integral_eqn (line 15) Nsol = solve(int(prod,x,0,2*pi)-1==0,N)

Risposte (2)

Torsten
Torsten il 3 Gen 2018
Modificato: Torsten il 3 Gen 2018
Does it work if you simply set
prod = y*z*N^2;
?
By the way: The result will be
N = +/- 1/sqrt(int(y*z,x,0,2*pi))
Best wishes
Torsten.
  2 Commenti
Sergio Manzetti
Sergio Manzetti il 3 Gen 2018
Didn't work for me, but I take your result for good! Thanks Torsten,
Torsten
Torsten il 3 Gen 2018
What's the error message for this coding:
syms h g x C n L p e E C m N
y = - (exp(-(x*(g*1i + (- 2*g^2 + E)^(1/2)))/h)*(g*1i - (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2)) + (exp(-(x*(g*1i - (- 2*g^2 + E)^(1/2)))/h)*(g*1i + (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2))
z = - (exp(-(x*(g*(-i) + (- 2*g^2 + E)^(1/2)))/h)*(g*(-i) - (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2)) + (exp(-(x*(g*(-i) - (- 2*g^2 + E)^(1/2)))/h)*(g*(-i) + (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2))
prod = N^2*y*z;
Nsol = solve(int(prod,x,0,2*pi)-1==0,N)
?
Best wishes
Torsten.

Accedi per commentare.


Birdman
Birdman il 3 Gen 2018
Use the following:
syms h g y(x) z(x) C n L p e E C m N
y(x) = - (exp(-(x*(g*1i + (- 2*g^2 + E)^(1/2)))/h)*(g*1i - (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2)) + (exp(-(x*(g*1i - (- 2*g^2 + E)^(1/2)))/h)*(g*1i + (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2))
z(x) = - (exp(-(x*(g*(-i) + (- 2*g^2 + E)^(1/2)))/h)*(g*(-i) - (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2)) + (exp(-(x*(g*(-i) - (- 2*g^2 + E)^(1/2)))/h)*(g*(-i) + (- 2*g^2 + E)^(1/2)))/(2*(E - 2*g^2)^(1/2))
prod=y.*z.*N.^2
Nsol = solve(int(prod,x,0,2*pi)-1==0,N)
A=vpa(Nsol)
  2 Commenti
Sergio Manzetti
Sergio Manzetti il 3 Gen 2018
Thanks Birdman, it gave the result. Quite a horrible one ! Thanks!
Birdman
Birdman il 3 Gen 2018
If it did, can you accept the answer?

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by