Assistance plotting radiation pattern
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
I am trying to make a polar plot using the following code yet it doesn't come out as smooth as desired. I'd appreciate some further guidance:
P = [-65,-67,-66,-68.2,-67,-67,-66,-65,-63,-62,-52,-42,-41.5,-47.39,-60.5,-61.7,-63.35,-67,-65.2,-66.1,-71,-67,-67,-68,-65,-65];
A = [-180,-165,-150,-135,-120,-105,-90,-75,-60,-45,-30,-15,0,15,30,39,45,60,75,90,105,120,135,150,165,180];
G = P+10;
polarplot(A*pi/180,abs(G));
0 Commenti
Risposta accettata
Star Strider
il 4 Giu 2018
I’m not certain what result you want.
One option is to interpolate your data:
Ai = linspace(min(A), max(A), 360);
Gi = interp1(A, G, Ai, 'spline');
figure
polarplot(Ai*pi/180,abs(Gi));
You will need to experiment with that to get the appropriate result.
8 Commenti
Star Strider
il 5 Giu 2018
No ideas.
I was helping you with or original question, and plotting your vectors. Antenna theory is far from my areas of expertise.
The idea of ‘negative gain’ is essentially attenuation. This only makes sense if the units are dB, since negative in that sense simply means fractional.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Antennas and Electromagnetic Propagation in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!