Help solving a second order differential equation
17 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
clear;clc
syms y(t)
fun = 0.001*diff(y,t,2)+(1050)*diff(y,t)+(1/0.0047)*y == 0;
cond1 = y(0) == 0;
cond2 = diff(y) == 0;
conds = [cond1 cond2];
ySol(t) = dsolve(fun,conds);
%ySol(t) = dsolve(fun);
ySol = simplify(ySol);
disp(ySol(t))
When I run the code I get the following error: "Unable to reduce to square system because the number of equations differs from the number of indeterminates."
Thank you.
0 Commenti
Risposte (1)
Star Strider
il 6 Dic 2018
If you use the numeric initial conditions, you get the trivial solution only, that being 0.
If you want to see the full expression (you can substitute in for the initial conditions later), this woirks:
syms y(t) y0 Dy0
Dy = diff(y,t);
D2y = diff(y,t,2);
fun = 0.001*D2y == -((1050)*Dy+(1/0.0047)*y);
cond1 = y(0) == y0;
cond2 = Dy(0) == Dy0;
conds = [cond1 cond2];
ySol(t) = dsolve(fun,conds);
%ySol(t) = dsolve(fun);
ySol = simplify(ySol, 'Steps',20)
disp(ySol(t))
producing:
(608855155^(1/2)*exp(t*((1000*608855155^(1/2))/47 - 525000))*(47*Dy0 + 24675000*y0 + 1000*608855155^(1/2)*y0))/1217710310000 - exp(-t*((1000*608855155^(1/2))/47 + 525000))*((608855155^(1/2)*Dy0)/25908730000 - y0/2 + (105*608855155^(1/2)*y0)/5181746)
2 Commenti
Star Strider
il 6 Dic 2018
My pleasure.
Use the subs function:
ySol = subs(ySol, {y0, Dy0}, {0, 0})
The result is still 0 if you do that.
Vedere anche
Categorie
Scopri di più su Equation Solving in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!