How to do a phase shift of a signal
276 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello,
I want to do a phase shift of a signal and I can't get the right method to do it. What I am doing is that first I do the FFT of the signal and then I get Phase and Magnitude. In the phase I add or subtract the value to be shifted and then I use the new phase and the old magnitude and do IFFT to get back the signal but what I get is not a shifted signal and also the signal value of the Y axis alos changed which should not be change.
Can any one guide me how to achieve successfully the phase shift without changing the value in y axis.
Thanks
1 Commento
$$$ $$$
il 23 Lug 2018
% % close all; % % clear all; % % x = 0:1e-6:60e-3; % bis 60 ms mit 1µs Schritte % % a = sin(2*pi*50*x); % % b = sin(2*pi*50*x-pi); % % y_rad=acos(dot(a,b)/(norm(a)*norm(b))) % % y_deg=y_rad*360/(2*pi) % % plot(x,a,x,b) % % xlabel(['Winkel in degree ist: ',num2str(y_deg)],'Color','r') % % grid on
Risposte (7)
Jan
il 18 Ago 2012
I'm not sure if I understand the question. Is FFT useful for a phase-shift? What about shifting the phase directly?
x = sin(linspace(0, 10*pi, 10000));
x_shift = zeros(1, numel(x));
x_shift(1:9000) = x(1001:10000);
But perhaps I've overlooked the complexity of the question.
1 Commento
Yvonne Haesevoets
il 15 Nov 2021
Modificato: Yvonne Haesevoets
il 13 Giu 2023
s/he is looking for fractional phase shifts for which you cannot "shift the phase directly".
For time-shifts by a non-integer number of samples, you need to use a property of the DTFT : a shift in the time-domain amounts to a modulation in the frequency domain (and vice-versa).
https://www.mathworks.com/matlabcentral/answers/483938-time-shifting-an-audio-in-a-frequency-domain?s_tid=mwa_osa_a
majid shaik
il 14 Mag 2015
Modificato: majid shaik
il 14 Mag 2015
I wrote some code to do the same thing it does work but not sure is it right please go through this
% code
clc
clear all
close all
f1=20;
t1=1;
fc=100*f1;
samples=1000;
t=(0:samples-1)/fc;
y=sin(2*pi*f1*t);
t0=1000/fc;
f=linspace(-fc/2,fc/2,samples);
y_ff=fftshift(fft(y));
y_ff2=exp(-j*2*pi*f*t0).*y_ff;
y2=ifft(ifftshift(y_ff2));
plot(t,abs(y2))
hold on
plot(t,y,'r')
grid on
0 Commenti
daniel mitchell
il 24 Nov 2021
Hello, This may help?
t = 0:0.01:2*pi;
x = sin(t);
Possible way 1:
k = 324; % t is of size 629 so if k=324 it corresponds to t(k)=pi approx
delta = zeros(1,length(x)); delta(k)=1;
x_ph = cconv(delta,x,length(x));
figure;
subplot(2,1,1); plot(t,x);
subplot(2,1,2); plot(t,x_ph);
Possible way 2:
X = fft(x);
w = (2*pi/length(x)) * (0:length(x)-1);
k = 324;
X_ph = X.*exp(-1i*w*k);
x_ph = ifft(X_ph);
figure;
subplot(2,1,1); plot(t,x);
subplot(2,1,2); plot(t,x_ph);
Possible way 3 (complex representation) :
x_complex = exp(1i*t);
x_complex_ph = x_complex*exp(-1i*pi);
x_ph = imag(x_complex_ph); %imag cause imag(e^it)=sin(t)
figure;
subplot(2,1,1); plot(t,x);
subplot(2,1,2); plot(t,x_ph);
$$$ $$$
il 23 Lug 2018
% % close all; % % clear all; % % x = 0:1e-6:60e-3; % bis 60 ms mit 1µs Schritte % % a = sin(2*pi*50*x); % % b = sin(2*pi*50*x-pi); % % y_rad=acos(dot(a,b)/(norm(a)*norm(b))) % % y_deg=y_rad*360/(2*pi) % % plot(x,a,x,b) % % xlabel(['Winkel in degree ist: ',num2str(y_deg)],'Color','r') % % grid on
0 Commenti
Malwinder Singh
il 27 Lug 2018
Modificato: Voss
il 30 Ott 2024
clc;
clear all;
close all;
IF=10e6;
FS=100e6;
TS=1/FS;
L=256;
n=1:L;
t0=0.1*(TS);%% shifted by 0.1 times of sample time
x_real=cos(2*pi*(IF/FS)*n);
x_imag=sin(2*pi*(IF/FS)*n);
sig_vect=complex(x_real,x_imag);
fft_out=fft(sig_vect);
fft_shifted=exp(-2i*pi*(IF)*t0)*fft_out;
sig_time_shifted=ifft(fft_shifted);
figure(1)
plot(real(sig_vect),'r*-')
hold on
plot(real(sig_time_shifted),'g*-')
grid on;
2 Commenti
Asaf Haddad
il 26 Ott 2020
There is no point in the fft and ifft here, since are simply multiplying with a constant phase. It doesn't matter if you multiply the signal or it transform.
Yvonne Haesevoets
il 15 Nov 2021
for fractional phase shifts, there is no other way than to do it by application of one of the DTFT's properties : time shift => modulation in frequency
Akanksha Pathak
il 6 Nov 2019
For a signal,
π f t) with frequency f , if we want to provide phase shift of ϕ radian,
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/246956/image.png)
Equation 1: ϕ=2π
f, where
is delay in time
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/246957/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/246958/image.png)
Equation 2:
=sin(2 πft+ ϕ)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/246959/image.png)
In case, we want to provide phase shift of θ degree, then
Equation 3: θ=360
f
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/246960/image.png)
Compute the required delay
using equation 3, compute corresponding delay in radian using equation 1, and use it to generate phase shift in
using equation 2.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/246961/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/246962/image.png)
Hope this answers
0 Commenti
Ties
il 3 Dic 2021
I have the same question.
Only i use FT function of Matlab. If I want to have the phase shift of the signal, can I use the FFTshift function of matlab
0 Commenti
Vedere anche
Categorie
Scopri di più su Fourier Analysis and Filtering in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!