P values for Normal Inverse Gaussian Distribution

3 visualizzazioni (ultimi 30 giorni)
Mel
Mel il 15 Ago 2012
I would like to calculate P values for data with a Normal Inverse Gaussian Distribution. I have looked at options for the normal distribution and this post has been useful... http://www.mathworks.com/matlabcentral/newsreader/view_thread/298645
My data's distribution was best fit to a normal inverse gaussian distribution by the allfitdist() function.
Thanks
Mel

Risposte (2)

Star Strider
Star Strider il 15 Ago 2012
Modificato: Star Strider il 15 Ago 2012
If I understand your question correctly, the core MATLAB function erfc can do what you want, with a slight modification:
P = @(z) erfc(-z/sqrt(2))/2;
This is absolutely not original — I copied the idea directly from the documentation. This is equivalent to the normcdf function in the Statistics Toolbox.
  7 Commenti
Mel
Mel il 15 Ago 2012
"The normal inverse Gaussian distribution is a mixture of normal and inverse Gaussian distributions." Clearly they are different distributions
Star Strider
Star Strider il 15 Ago 2012
Modificato: Star Strider il 15 Ago 2012
I admit that I never encountered any of those. They're not in any of my reference texts on random processes, mathematical biology, experiment design, or Kalman filters. When you mentioned z-scores and getting p-values from them, I thought you were referring to the standard normal distribution and its inverse.
I'm not quite sure what you're doing, but my only caution is to be sure that your data meet the assumptions of the distribution you choose. The fact that a distribution ‘fits’ does not imply that it is correct for your data or your application.

Accedi per commentare.


Gabriel Bruneau
Gabriel Bruneau il 15 Ago 2012
If I understand correctly your question, I think that the function norm_prb.m in the Econometrics Toolbox by James P. LeSage does exactly what you want.
  1 Commento
Mel
Mel il 15 Ago 2012
Thank you Gabriel. Looks like this also uses one of the erf family of functions.Seems like the way to go.

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by