How to find a limit without syms and limit function

9 visualizzazioni (ultimi 30 giorni)
Let's take the limit . How can i calculate it without using syms and matlab's function limit?

Risposta accettata

Star Strider
Star Strider il 25 Mag 2019
Modificato: Star Strider il 25 Mag 2019
Crude but effective (for this function, may not be universally applicable):
fcn = @(x) (x.^3 - 1) ./ (x - 1);
x = 1;
lm = fcn(x-1E-15)
lm =
3
Experiment to get the result you want.
EDIT —
Another option is to use a simple numerical derivative:
dfdx = @(f,x) (f(x + 1E-8) - f(x)) ./ 1E-8;
fcnn = @(x) x.^3 - 1;
fcnd = @(x) x - 1;
xv = 1;
Lm = dfdx(fcnn,xv) ./ dfdx(fcnd,xv)
producing:
Lm =
3
  2 Commenti
Gustav Garpebo
Gustav Garpebo il 6 Ott 2021
Can you pleasae explain the terms? xv, fcnn, fcnd etc
Star Strider
Star Strider il 6 Ott 2021
@Gustav Garpebo — Sure! (I probably should have explained those originally, describing them in comments, although they were clear in the context 2½ years ago.)
The forward-difference derivative ‘dfdx’ function requires a function handle (first argument) and a value of ‘x’ at which the function is evaluated (second argument), and since the function is being evaluated at 1 that is what ‘xv’ is assigned to be. The two other functions, ‘fcnn’ and ‘fcnd’ are the numerator and denominator of the original function, respectively. The rest is straightforward.
.

Accedi per commentare.

Più risposte (1)

John D'Errico
John D'Errico il 6 Ott 2021
Modificato: John D'Errico il 6 Ott 2021
You can use my limest function. It is on the file exchange.
>> fun= @(x) (x.^3 - 1)./(x-1)
fun =
function_handle with value:
@(x)(x.^3-1)./(x-1)
Now use limest. It even provides an estimate of how well it thinks that limit is known.
[L,errest] = limest(fun,1)
L =
3
errest =
2.20957326622612e-14
Is that correct? l'hopital would tell me of course. Thus, if I differentiate the numerator and the demoninator, we would have 3^x^2/1. At x==1, that is 3.
The symbolic toolbox would agree, but you don't want to see that.
syms X
F = (x^3-1)/(x-1)
limit(F,1)
ans =
3
But we can still use the symbolic TB, without use of limit, just using l'hopital...
subs(diff(X^3-1),X,1)/subs(diff(X-1),X,1)
ans =
3
As expected, it returns 3 as the desired limit.
You can find limest on the file exchange, here:
LIMEST uses an adaptive, multi-order Richardson extrapolation scheme, modified to provide also an estimate of the uncertainty at the extrapolation point, all of my invention.)

Categorie

Scopri di più su Symbolic Math Toolbox in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by