probem with FaceColor of bar
    4 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
R=[0.779810425627480	0.000659297275251825	0.688360393160301	0.184532497610895	0.0905962113611394	0.0626722269195076	0.115760244765211	9.82482188727207e-06]
R2=[0.780896183843548	0.783089437325240	0.824384828931732	0.783480655246833	0.782324163937975	0.843400789787716	0.780259820660027	0.692761472581375	0.186630591612089	0.112331622540645	0.0684118151132265	0.124754260377728	0.000750940658416743	0.786209417062528	0.696211586340910	0.704468853008563	0.793533655775326	0.689231222654964	0.247394539787509	0.259526400351099	0.187357565089202	0.306685869655797	0.221985207424738	0.213936150337528	0.0911810803863357	0.226392210021089	0.0628097955366125	0.177330398333869]
R3=[0.783714743066040	0.826211863604426	0.783570491492865	0.784235776628874	0.846564931503649	0.781795435841793	0.824795480225099	0.793293977502063	0.807394055917125	0.843543223850931	0.784225204506264	0.828604905652616	0.830131797565598	0.845605618105580	0.866367812401167	0.784125887674771	0.844962871032082	0.783775317173255	0.857006696649914	0.782646132825257	0.886525345744327	0.792443729599900	0.707602204791307	0.706291944439437	0.795689075333992	0.692960273475268	0.269367754096017	0.269897642276868	0.187804460375981	0.338233654026156	0.308011853235251	0.214628124374582	0.117141128901629	0.229057283333948	0.0684491039966618	0.183900696434232	0.789982210441524	0.793671406033401	0.807345796487103	0.835447142202684	0.705376496011716	0.804011717368906	0.696706432568307	0.795703083661133	0.705025556256066	0.832447316043765	0.383708291936295	0.256938376298548	0.368132130189507	0.275653288847231	0.375594581589765	0.328508421589727	0.426445219789627	0.222082122851731	0.295080637436694	0.303500075279901]
R4=[0.826996774935897	0.794557334602349	0.809619574536623	0.846642577477218	0.785322675618129	0.828939025798648	0.833675796861419	0.847202474959195	0.881468153988862	0.784703824104669	0.851106275596922	0.784004921796498	0.858781120350036	0.785070083916637	0.888559577339896	0.828833804725073	0.834955475482176	0.846195401779085	0.867140402842741	0.813983848871127	0.845075441261779	0.794705445368061	0.872508246817512	0.810962400206204	0.886525524768893	0.831303117637229	0.847642143194423	0.868934285031242	0.858409734520770	0.872566944267203	0.906757870765131	0.857428757371442	0.784387451549559	0.886620441089954	0.905697241656523	0.801922541124688	0.797636506176264	0.807358981738157	0.862781849694327	0.710334094086818	0.804080272956492	0.707686352900283	0.798434388040983	0.706487674364295	0.833750942309195	0.471755923663536	0.270095621013156	0.456472753439997	0.277630257351045	0.430498750484947	0.343336309036551	0.454955851249911	0.317945379843094	0.298347039374467	0.304574520635417	0.794166474258310	0.814390776564570	0.840239456373557	0.810347726332535	0.841150193698107	0.877516625338572	0.804070982436114	0.705841896439888	0.849259411824625	0.832907343342206	0.437358816488236	0.495244980869643	0.405878538783720	0.424820970524598	0.547495448988831]
R5=[0.828991929369686	0.838411193709899	0.847498079098537	0.884286848091013	0.813984689455561	0.852689268734507	0.795461615160834	0.873675836205425	0.815033194461026	0.888567443766334	0.833676221089556	0.851532466108260	0.881503316538568	0.859249568891160	0.893364109834186	0.907586430555856	0.858785564028645	0.785320228500511	0.889516792068951	0.906442600699576	0.838035644265987	0.847642955904863	0.868937970747267	0.873278896824283	0.876253552968026	0.908008036718245	0.872689586925684	0.817720580546422	0.886663386046064	0.937203366812540	0.858609315682532	0.872839144872220	0.907099734481859	0.924204051669980	0.910846971035114	0.802163827732857	0.815595411648910	0.884996077524746	0.810350740286317	0.864252213958193	0.883287964927457	0.804103360669447	0.710335861966019	0.849504374181575	0.834436602026480	0.484612221304780	0.704965265425382	0.460974241930084	0.447415007134505	0.598056626502316	0.814518098488400	0.842523239334591	0.888286770499680	0.878177732084617	0.852719060026541	0.604403396129531]
R6=[0.839071360465035	0.852704784532168	0.887822544505265	0.876021378692969	0.896575199509569	0.909363801082844	0.875080432727216	0.818093523631484	0.890239643298577	0.937369178243077	0.859250167086107	0.903297054324622	0.907629634392680	0.926273966668406	0.911091067394923	0.873423351158586	0.877473297910146	0.908008113026594	0.941060841208969	0.938200096744872	0.927636099224910	0.815597023464531	0.891134879647912	0.903795572804284	0.883537686178393	0.854841118650416	0.733815636601844	0.889727749438983]
R7=[0.878642031246962	0.903669866631326	0.910417834781449	0.941547570214469	0.938233123072641	0.937500290384948	0.942085824188201	0.914574284340743]
R8=[0.945329036585856]
R_all = [R R2 R3 R4 R5 R6 R7 R8];
label_all = [label,label2,label3,label4,label5,label6,label7,label8];
[R_all_sort,ind_sort] = sort(R_all,'descend');
label_all_sort = label_all(ind_sort);
threshold = 0.95;
logical_index = R_all_sort>=threshold;
N_true = length(find(logical_index));
figure
hall=bar(R_all_sort(logical_index));
hold on
grid on
xlabel('metriche lavatrice');
ylabel('R^2 lavatrice ');
ax=gca;
ax.XTick = 1:N_true; 
ax.XTickLabels = label_all_sort(logical_index);
ax.XTickLabelRotation = 90;
legend({'soggettività:lavatrice' });
ylim([threshold 1]);
hi i have a problem, i need to have differet color when i plot the figure bar (Facecolor) like this:
R = red
R2= green
 R3= white
 R4 =cyan
R5=blue
 R6=yellow
 R7=black
 R8= magenta
1 Commento
  dpb
      
      
 il 30 Set 2019
				threshold = 0.95;
logical_index = R_all_sort>=threshold;
...
>> sum(logical_index)
ans =
     0
>> max(R_all)
ans =
    0.9453
>> 
There are no elements above the threshold so nothing will show up on the plot.
Also, you've mixed all elements up in combining into one long vector and then sorted that vector so there's no identification from which element any particular value came.
Would need to define corollary array of group number to carry along.
Risposta accettata
  darova
      
      
 il 30 Set 2019
        One way:
R=[0.779810425627480	0.000659297275251825	0.688360393160301	0.184532497610895	0.0905962113611394	0.0626722269195076	0.115760244765211	9.82482188727207e-06];
R2=[0.780896183843548	0.783089437325240	0.824384828931732	0.783480655246833	0.782324163937975	0.843400789787716	0.780259820660027	0.692761472581375	0.186630591612089	0.112331622540645	0.0684118151132265	0.124754260377728	0.000750940658416743	0.786209417062528	0.696211586340910	0.704468853008563	0.793533655775326	0.689231222654964	0.247394539787509	0.259526400351099	0.187357565089202	0.306685869655797	0.221985207424738	0.213936150337528	0.0911810803863357	0.226392210021089	0.0628097955366125	0.177330398333869];
R3=[0.783714743066040	0.826211863604426	0.783570491492865	0.784235776628874	0.846564931503649	0.781795435841793	0.824795480225099	0.793293977502063	0.807394055917125	0.843543223850931	0.784225204506264	0.828604905652616	0.830131797565598	0.845605618105580	0.866367812401167	0.784125887674771	0.844962871032082	0.783775317173255	0.857006696649914	0.782646132825257	0.886525345744327	0.792443729599900	0.707602204791307	0.706291944439437	0.795689075333992	0.692960273475268	0.269367754096017	0.269897642276868	0.187804460375981	0.338233654026156	0.308011853235251	0.214628124374582	0.117141128901629	0.229057283333948	0.0684491039966618	0.183900696434232	0.789982210441524	0.793671406033401	0.807345796487103	0.835447142202684	0.705376496011716	0.804011717368906	0.696706432568307	0.795703083661133	0.705025556256066	0.832447316043765	0.383708291936295	0.256938376298548	0.368132130189507	0.275653288847231	0.375594581589765	0.328508421589727	0.426445219789627	0.222082122851731	0.295080637436694	0.303500075279901];
R4=[0.826996774935897	0.794557334602349	0.809619574536623	0.846642577477218	0.785322675618129	0.828939025798648	0.833675796861419	0.847202474959195	0.881468153988862	0.784703824104669	0.851106275596922	0.784004921796498	0.858781120350036	0.785070083916637	0.888559577339896	0.828833804725073	0.834955475482176	0.846195401779085	0.867140402842741	0.813983848871127	0.845075441261779	0.794705445368061	0.872508246817512	0.810962400206204	0.886525524768893	0.831303117637229	0.847642143194423	0.868934285031242	0.858409734520770	0.872566944267203	0.906757870765131	0.857428757371442	0.784387451549559	0.886620441089954	0.905697241656523	0.801922541124688	0.797636506176264	0.807358981738157	0.862781849694327	0.710334094086818	0.804080272956492	0.707686352900283	0.798434388040983	0.706487674364295	0.833750942309195	0.471755923663536	0.270095621013156	0.456472753439997	0.277630257351045	0.430498750484947	0.343336309036551	0.454955851249911	0.317945379843094	0.298347039374467	0.304574520635417	0.794166474258310	0.814390776564570	0.840239456373557	0.810347726332535	0.841150193698107	0.877516625338572	0.804070982436114	0.705841896439888	0.849259411824625	0.832907343342206	0.437358816488236	0.495244980869643	0.405878538783720	0.424820970524598	0.547495448988831];
R5=[0.828991929369686	0.838411193709899	0.847498079098537	0.884286848091013	0.813984689455561	0.852689268734507	0.795461615160834	0.873675836205425	0.815033194461026	0.888567443766334	0.833676221089556	0.851532466108260	0.881503316538568	0.859249568891160	0.893364109834186	0.907586430555856	0.858785564028645	0.785320228500511	0.889516792068951	0.906442600699576	0.838035644265987	0.847642955904863	0.868937970747267	0.873278896824283	0.876253552968026	0.908008036718245	0.872689586925684	0.817720580546422	0.886663386046064	0.937203366812540	0.858609315682532	0.872839144872220	0.907099734481859	0.924204051669980	0.910846971035114	0.802163827732857	0.815595411648910	0.884996077524746	0.810350740286317	0.864252213958193	0.883287964927457	0.804103360669447	0.710335861966019	0.849504374181575	0.834436602026480	0.484612221304780	0.704965265425382	0.460974241930084	0.447415007134505	0.598056626502316	0.814518098488400	0.842523239334591	0.888286770499680	0.878177732084617	0.852719060026541	0.604403396129531];
R6=[0.839071360465035	0.852704784532168	0.887822544505265	0.876021378692969	0.896575199509569	0.909363801082844	0.875080432727216	0.818093523631484	0.890239643298577	0.937369178243077	0.859250167086107	0.903297054324622	0.907629634392680	0.926273966668406	0.911091067394923	0.873423351158586	0.877473297910146	0.908008113026594	0.941060841208969	0.938200096744872	0.927636099224910	0.815597023464531	0.891134879647912	0.903795572804284	0.883537686178393	0.854841118650416	0.733815636601844	0.889727749438983];
R7=[0.878642031246962	0.903669866631326	0.910417834781449	0.941547570214469	0.938233123072641	0.937500290384948	0.942085824188201	0.914574284340743];
R8=[0.945329036585856];
R_all = [R R2 R3 R4 R5 R6 R7 R8];
color_ind = [R*0+1 R2*0+2 R3*0+3 R4*0+4 R5*0+5 R6*0+6 R7*0+7 R8*0+8];
cm = 'rgwcbykm';        % reg green white ...
[R_all_sort,ind_sort] = sort(R_all,'descend');
color_sort = color_ind(ind_sort);
threshold = 0.95;
ind1 = find( R_all_sort<=threshold );
cla
hold on
for i = ind1
    h = bar(ind1(i),R_all_sort(i));
    set(h,'EdgeColor','none','FaceColor',cm(color_sort(i)))
end
hold off
But works slow. Any idea of how speed it up?
6 Commenti
Più risposte (1)
  dpb
      
      
 il 30 Set 2019
        
      Modificato: dpb
      
      
 il 30 Set 2019
  
      Carrying on from the above after defining data...
clrs=[[1 0 0];[0 1 0];[1 1 1];[0 1 1];[0 0 1];[1 1 0];[0 0 0];[1 0 1]]; % rgb for named colors
R1=R;      % just for symmetry in naming
G=[1+R1*0 2+R2*0 3+R3*0 4+R4*0 5+R5*0 6+R6*0 7+R7*0 8+R8*0];
threshold=0.925;      % 0.95 > max() --> no elements selected
ix=(R_all>=threshold);
R=R_all(ix); 
[~,isort]=sort(R,'descend');
hBar=bar(R(isort));
hBar.FaceColor='flat';
hBar.CData=clrs(isort(G),:);
returns

Vedere anche
Categorie
				Scopri di più su Labels and Annotations in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


