MATLAB Answers

Least Square Minimization (Levenberg-Marquant method) of damped oscillation curves

10 views (last 30 days)
Louise on 2 Dec 2019
Edited: Matt J on 2 Dec 2019
My goal is to fit my experimental data (attached) with the following equation with Levenberg Marquant method :
A*exp(-c*t)*sin(2*pi*f*t+phi), where A is the amplitude, t is time, c is the damping coefficient and f the frequency and phi the phase coefficient.
As my skills are weak in least square minimzation in Matlab, thanks in advance for your help,


Sign in to comment.

Accepted Answer

Matt J
Matt J on 2 Dec 2019
You can use lsqcurvefit with the 'levenberg-marquardt' Algorithm setting


Show 1 older comment
Matt J
Matt J on 2 Dec 2019
This works a bit better. I don't know if I trust the model enough to expect a better fit.
fun = @(x,t) x(1)*exp(-x(2)*t).*sin(2*pi*x(3)*t+x(4))+x(5);
x0 = [max(S),1,0.1,1,mean(S)];
options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');
lb = [0,0,0,-1,-inf];
ub = [inf,inf,inf,1,+inf];
x = lsqcurvefit(fun,x0,t,S,lb,ub,options)
legend('Data','Fitted exponential')
title('Data and Fitted Curve')

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by