fourth order differential equation

8 visualizzazioni (ultimi 30 giorni)
kingcruises
kingcruises il 31 Dic 2019
Commentato: Star Strider il 2 Gen 2020
syms f(x)
Df = diff(f,x);
D2f = diff(f,x,2);
D3f = diff(f,x,3);
D4f = diff(f,x,4);
ode =3*D4f+(2*x^2+6)*D3f+5*D2f-Df-2*f == - 4*x^6+ 2*x^5 -55*x^4 - 24*x^3 - 22*x^2 - x*32;
cond1 = f(0)==0;
cond2 = Df(0)==1;
cond3 = D2f(0) == -8;
cond4 = D3f(0) == 6;
conds = [cond1 cond2 cond3 cond4];
fSol(x) = dsolve(ode,conds);
figure
ezplot(fSol(x),[0 1])
The error is :
Warning: Unable to find explicit solution.
> In dsolve (line 201)
(line 13)
Error using inlineeval (line 14)
Error in inline expression ==> matrix([])
Undefined function 'matrix' for input arguments of type 'double'.
Error in inline/feval (line 33)
INLINE_OUT_ = inlineeval(INLINE_INPUTS_, INLINE_OBJ_.inputExpr, INLINE_OBJ_.expr);
Error in ezplotfeval (line 51)
z = feval(f,x(1));
Error in ezplot>ezplot1 (line 486)
[y, f, loopflag] = ezplotfeval(f, x);
Error in ezplot (line 158)
[hp, cax] = ezplot1(cax, f{1}, vars, labels, args{:});
Error in sym/ezplot (line 78)
h = ezplot(fhandle(f),varargin{:});%#ok<EZPLT>
Error in try2 (line 15)
ezplot(fSol(x),[0 1])

Risposta accettata

Star Strider
Star Strider il 31 Dic 2019
If an analytical solution is not an option, and a plot of the solution is the objectrive:
syms f(x) X Y
Df = diff(f,x);
D2f = diff(f,x,2);
D3f = diff(f,x,3);
D4f = diff(f,x,4);
ode =3*D4f+(2*x^2+6)*D3f+5*D2f-Df-2*f == - 4*x^6+ 2*x^5 -55*x^4 - 24*x^3 - 22*x^2 - x*32;
% cond1 = f(0)==0;
% cond2 = Df(0)==1;
% cond3 = D2f(0) == -8;
% cond4 = D3f(0) == 6;
[VF,Sbs] = odeToVectorField(ode);
odefcn = matlabFunction(VF, 'Vars',{x,Y});
[X,Y] = ode45(odefcn, [0 1], [0 1 -8 6]);
figure
plot(X, Y)
grid
legend(string(Sbs))
producing:
1fourth order differential equation - 2019 12 31.png
  15 Commenti
kingcruises
kingcruises il 2 Gen 2020
hey i must plot ode as a total not f, D2f, Df, D3f each one alone.
I want to plot ode as one graph
Star Strider
Star Strider il 2 Gen 2020
The ‘method of moments’ was not part of my undergraduate or graduate education. (I had to look it up.) I will leave that part to you.
Plotting the total of the derivatives is straightforward. Only one change to my posted code is needed and that to sum across the columns in the plot call:
[X,Y] = ode45(odefcn, [0 1], [0 1 -8 6]);
figure
plot(X, sum(Y,2))
grid
That should do what you want.

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by