How to make code to split, compute mean, apply Softmax
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I have 90 datasets (9 data x 10 labels)
1. split the dataset into support(80dataset) and query(10dataset)
2. Compute each mean of examples(9 means)
3. Compute the Euclidean distance between each mean and query(10dataset)
4. apply Softmax and calculate probabilities
5. compute accuracy
1 Commento
Sindar
il 16 Mar 2020
check out splitapply: https://www.mathworks.com/help/matlab/ref/splitapply.html
Risposta accettata
Gaurav Garg
il 20 Mar 2020
Modificato: Gaurav Garg
il 20 Mar 2020
Hi,
You can use splitapply function to split your whole data into 9 groups and apply the mean function to each group. It would return you an array of 9 elements, where each element is a mean to one group. You can now, carry on with the third step to compute the Euclidean distance between each mean and the query set, and proceed with steps 4 and 5.
Algo:
Y=splitapply (mean, X, G); % G is a vector of group numbers, X is the whole data
for i=1:8
% compute Euclidean distance between Y[i] and query dataset
end
% Steps 4 and 5
3 Commenti
Sindar
il 23 Mar 2020
If your dataset is X and the last column is not part of the data:
G = findgroups(X(:,end));
Y = splitapply(mean, X(:,1:end-1), G);
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Statistics and Machine Learning Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!