calculating an integral of complex function substituting data from excel

2 visualizzazioni (ultimi 30 giorni)
I have an excel data whose components are all numbers ranging from 2.9 to 3(ex) 2.90234 2.90343 ~ 2.98021).
I want to import these data as variable 'e'. Also, I have other parameters and substituting those values including 'e', I want to get a series of resulting values of 'I' and eventually plot them. However, when I run the code below, I get NaN for 'I' for every data. What should I do?
x = 3.01;
k = 8.62*10^-5;
T = 160;
a = 0.2;
fun = @(x,k,T,a,b,e) exp(-b.^2./(2.*a.^2)).*heaviside(x-b-e).*exp(-(x-b-e)./(k.*T));
I = integral(@(b) fun(x,k,T,a,b,e),0,Inf)
%plot(e,I)
  1 Commento
dpb
dpb il 18 Gen 2021
>> x = 3.01;
k = 8.62*10^-5;
T = 160;
a = 0.2;
fun = @(x,k,T,a,b,e) exp(-b.^2./(2.*a.^2)).*heaviside(x-b-e).*exp(-(x-b-e)./(k.*T));
e=2.903;fun(x,k,T,a,b,e)
Unrecognized function or variable 'b'.
>>
so you're missing more than just e
Use readmatrix or similar to read the spreadsheet.
Then, of course, check that your function actually produces what you expect it to for a range of cases first...

Accedi per commentare.

Risposta accettata

Walter Roberson
Walter Roberson il 18 Gen 2021
format long g
e = [2.90234, 2.90343, 2.98021];
x = 3.01;
k = 8.62*10^-5;
T = 160;
a = 0.2;
fun = @(x,k,T,a,b,e) exp(-b.^2./(2.*a.^2)).*heaviside(x-b-e).*exp(-(x-b-e)./(k.*T));
F = @(b) fun(x,k,T,a,b,e);
I = integral(F,0,Inf, 'arrayvalued', true);
Warning: Infinite or Not-a-Number value encountered.
fplot(F, [0 100])
F(9), F(10)
ans = 1×3
0 0 0
ans = 1×3
NaN NaN NaN
b = 10,[exp(-b.^2./(2.*a.^2)), heaviside(x-b-e), exp(-(x-b-e)./(k.*T))]
b =
10
ans = 1×7
0 0 0 0 Inf Inf Inf
[(x-b-e), (k.*T)], (x-b-e)./(k.*T)
ans = 1×4
-9.89234 -9.89343 -9.97021 0.013792
ans = 1×3
-717.252030162413 -717.331061484919 -722.898056844548
It appears that what is happening is that in some cases where heaviside() would be 0, that the corresponding exp() term is infinite because of the value inside the exp() becomes a large positive number. However, 0 times infinity is NaN.
I would suggest a piecewise() would be in order,
fun = @(x,k,T,a,b,e) piecewise(x-b-e > 0, exp(-b.^2./(2.*a.^2)).*exp(-(x-b-e)./(k.*T)), 0);
syms b
F = arrayfun(@(E) fun(x,k,T,a,b,E), e)
F = 
I = vpaintegral(F, b, 0, inf)
I = 
  1 Commento
Wonkyung Choi
Wonkyung Choi il 19 Gen 2021
Thank you all! I did not know that zero*inf is simply NaN. I've solved the problem by just setting the range for b to be [0,1]. Again thanks a lot!

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by