how to solve PDE with derivative boundary conditions ?

4 visualizzazioni (ultimi 30 giorni)
hey all
im trying to solve PDE with derivative boundary condition , so i tend to use the imaginary node method , could i have another way to solve it without any built in function
this is the qustion:
𝜕𝑇𝜕𝑡=𝜕2𝑇𝜕𝑥2+𝑞(𝑥) (1)
With 𝑞(𝑥)=100sin(𝜋𝑥) (2)
1)
𝑇(𝑥,0)=0 (3)
2)
𝜕𝑇𝜕𝑡(0,𝑡)=𝑇(0,𝑡)−10 (4)
3)
𝜕𝑇𝜕𝑡(1,𝑡)=10−𝑇(1,𝑡) (5)
clear all;
close all;
clc;
%% Demo program for parapolic pde
dt = 0.25;
dx = 0.1*dt;
alpha=1;
t = 0:dt:15;
x = 0:dx:4;
q_x=(100*sin(pi*x));
N = length(x)-1;
T=[]; %Dynamic size
T(1,:) = zeros(1,5) ; %Initial condition
for j=1:length(t)-1
T(1,N-1) = T(j+1,N) + (2*dx*(T(j+1,N+1)-10));
for i=2:N
T(j+1,i) = T(j,i)+alpha*(dt/(dx^2))*(T(j,i+1)+ T(j,i-1)-2*T(j,i))+q_x;
end
T(2,N+2) = T(j+1,N) + (2*dx*(10-T(j+1,N+1)));
end
mesh(t,x,T)
colorbar;
the code isn't evaluated , what is the proplem?

Risposta accettata

darova
darova il 2 Apr 2021
Try these corrections
T = zeros(length(t),length(x));
for j=1:length(t)-1
T(j+1,1) = T(j,1) + dt*(T(j,1)-10);
T(j+1,N) = T(j,N) + dt*(10-T(j,N));
for i=2:N-1 % changed
T(j+1,i) = T(j,i)+alpha*(dt/(dx^2))*(T(j,i+1)+ T(j,i-1)-2*T(j,i)) + q_x(i); % note: q_x(i)
end
end
mesh(t,x,T)
  2 Commenti
Mohammad Adeeb
Mohammad Adeeb il 2 Apr 2021
Modificato: Mohammad Adeeb il 2 Apr 2021
it's worked but the mesh result is totally wrong
darova
darova il 3 Apr 2021
I made some change sto your code. Some notes:
  • should be larger than ( should be small )
  • should be small too
  • i changed boundary conditions 𝜕𝑇𝜕𝑡(0,𝑡)=𝑇(0,𝑡)−10 and 𝜕𝑇𝜕𝑡(1,𝑡)=10−𝑇(1,𝑡)
clc,clear
%% Demo program for parapolic pde
dt = 0.25;
dx = 5*dt;
alpha=1;
t = 0:dt:5;
x = 0:dx:20;
q_x = sin(pi*x/max(x));
N = length(x);
r = alpha*dt/dx^2;
T = zeros(length(t),length(x));
for j=1:length(t)-1
T(j+1,1) = T(j,1) + dt*(T(j,1)-1/10); % changed these
T(j+1,N) = T(j,N) + dt*(1/10-T(j,N));
for i=2:N-1 % changed
T(j+1,i) = T(j,i)+r*diff(T(j,i-1:i+1),2) + q_x(i); % note: q_x(i)
end
end
surf(x,t,T)

Accedi per commentare.

Più risposte (0)

Prodotti


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by