One approach — 
T1 = array2table(randi(60,15, 7))
T1 = 15×7 table
    Var1    Var2    Var3    Var4    Var5    Var6    Var7
    ____    ____    ____    ____    ____    ____    ____
     12       9      56      23      12       3       8 
     37      49       4      59      14      16      41 
     46      48      13       6      11      53       3 
     43      33      16      44       6       7      48 
     57       4      40      40      51      54      52 
      5       3      46       2       4      57      30 
     22      43      32       1      26      52      32 
     56      14      38      55      46       4       9 
     43       2      20      53       6      32      21 
     35       4      27       9      22       6       7 
     28       9      37      35      24      49      37 
     47      30      14      53      49      23       9 
     29      16      57      28      27      15      10 
     15      32      56      49      55      39      38 
     47      17       7      29      18       8       1 
idx = any(T1{:,:}>50,2);                                    % Logical Row Index
T1_extracted = T1(idx,:)
T1_extracted = 11×7 table
    Var1    Var2    Var3    Var4    Var5    Var6    Var7
    ____    ____    ____    ____    ____    ____    ____
     12       9      56      23      12       3       8 
     37      49       4      59      14      16      41 
     46      48      13       6      11      53       3 
     57       4      40      40      51      54      52 
      5       3      46       2       4      57      30 
     22      43      32       1      26      52      32 
     56      14      38      55      46       4       9 
     43       2      20      53       6      32      21 
     47      30      14      53      49      23       9 
     29      16      57      28      27      15      10 
     15      32      56      49      55      39      38 
EDIT — (21 May 2021 at 15:52)
Added timetable operations and result — 
T1T = [table(datetime('now')+hours(0:size(T1,1)-1)', 'VariableNames',{'Time'}) T1]
T1T = 15×8 table
            Time            Var1    Var2    Var3    Var4    Var5    Var6    Var7
    ____________________    ____    ____    ____    ____    ____    ____    ____
    21-May-2021 15:50:17     12       9      56      23      12       3       8 
    21-May-2021 16:50:17     37      49       4      59      14      16      41 
    21-May-2021 17:50:17     46      48      13       6      11      53       3 
    21-May-2021 18:50:17     43      33      16      44       6       7      48 
    21-May-2021 19:50:17     57       4      40      40      51      54      52 
    21-May-2021 20:50:17      5       3      46       2       4      57      30 
    21-May-2021 21:50:17     22      43      32       1      26      52      32 
    21-May-2021 22:50:17     56      14      38      55      46       4       9 
    21-May-2021 23:50:17     43       2      20      53       6      32      21 
    22-May-2021 00:50:17     35       4      27       9      22       6       7 
    22-May-2021 01:50:17     28       9      37      35      24      49      37 
    22-May-2021 02:50:17     47      30      14      53      49      23       9 
    22-May-2021 03:50:17     29      16      57      28      27      15      10 
    22-May-2021 04:50:17     15      32      56      49      55      39      38 
    22-May-2021 05:50:17     47      17       7      29      18       8       1 
TT1 = table2timetable(T1T);
idx = any(TT1{:,:}>50,2);                                    % Logical Row Index
TT1_extracted = TT1(idx,:)
TT1_extracted = 11×7 timetable
            Time            Var1    Var2    Var3    Var4    Var5    Var6    Var7
    ____________________    ____    ____    ____    ____    ____    ____    ____
    21-May-2021 15:50:17     12       9      56      23      12       3       8 
    21-May-2021 16:50:17     37      49       4      59      14      16      41 
    21-May-2021 17:50:17     46      48      13       6      11      53       3 
    21-May-2021 19:50:17     57       4      40      40      51      54      52 
    21-May-2021 20:50:17      5       3      46       2       4      57      30 
    21-May-2021 21:50:17     22      43      32       1      26      52      32 
    21-May-2021 22:50:17     56      14      38      55      46       4       9 
    21-May-2021 23:50:17     43       2      20      53       6      32      21 
    22-May-2021 02:50:17     47      30      14      53      49      23       9 
    22-May-2021 03:50:17     29      16      57      28      27      15      10 
    22-May-2021 04:50:17     15      32      56      49      55      39      38 
.




