# 3D matrix manipulation problems

1 visualizzazione (ultimi 30 giorni)
Tom il 19 Set 2013
Commentato: Tom il 20 Dic 2013
I struggle with this generally and have come up against a barrier again.
I'm trying to create vibrational mode functions for a rectangular membrane. The equation is simple enough: -
W_n = sin(x*pi*i/L_x)*sin(y*pi*i/L_y)
Here's where I'm up to: -
L_x = 27.4e-3; %membrane width (m)
L_y = 27.4e-3; %membrane height (m)
N_x = 10; %no. of eigenfreqs considered in x dimension
N_y = 10; %no. of eigenfreqs considered in y dimension
N = N_x*N_y; %total no. of eigenfreqs considered
x = (linspace(0.5*L_x/N_x,L_x - 0.5*L_x/N_x,N_x))';
%membrane x-dimension mapping points
%each at the centre of an element
y = (linspace(0.5*L_y/N_y,L_y - 0.5*L_y/N_y,N_y));
%membrane y-dimension mapping points
%each at the centre of an element
x_ref = 1:length(x);
y_ref = 1:length(y);
W_n = zeros(N_x,N_y,N);
W_n(:,:,01) = (sin(x(x_ref,:,:)*1*pi/L_x)...
*sin(y(:,y_ref,:)*1*pi/L_y));
W_n(:,:,02) = (sin(x(x_ref,:,:)*1*pi/L_x)...
*sin(y(:,y_ref,:)*2*pi/L_y));
W_n(:,:,18) = (sin(x(x_ref,:,:)*2*pi/L_x)...
*sin(y(:,y_ref,:)*8*pi/L_y));
W_n(:,:,46) = (sin(x(x_ref,:,:)*5*pi/L_x)...
*sin(y(:,y_ref,:)*6*pi/L_y));
W_n(:,:,89) = (sin(x(x_ref,:,:)*9*pi/L_x)...
*sin(y(:,y_ref,:)*9*pi/L_y));
W_n(:,:,100) = (sin(x(x_ref,:,:)*10*pi/L_x)...
*sin(y(:,y_ref,:)*10*pi/L_y));
The numbers on the left hand side - 01, 02, 18, 46, 89, 100 - actually need to be 1,2,3,...,100, i.e.
n = 1:100; %mode number counting from 1 to 100
These refer to the mode numbers - although this is a bit odd - but still not too complicated. Basically if n = 01, then the mode is (1,1). If n = 59 the mode is (6,9), i.e. i = 6 & j = 9. I have solved this using the following: -
i = floor((n/10 - n/1000)) + 1;
%mode number from 1 to 10 in x dimension
j = n - 10*(floor((n/10 - n/1000)));
%mode number from 1 to 10 in y dimension
Now I just need to put n, i and j into my W_n equation, but I can't figure out how!
Any help would be greatly appreciated :)
##### 0 CommentiMostra -1 commenti meno recentiNascondi -1 commenti meno recenti

Accedi per commentare.

### Risposta accettata

Simon il 19 Set 2013
Hi!
I don't understand why the x and y spacing depends on the number of modes/frequencies.
Take a look at the following code:
L_x = 27.4e-3; %membrane width (m)
L_y = 27.4e-3; %membrane height (m)
N_x = 5; %no. of eigenfreqs considered in x dimension
N_y = 10; %no. of eigenfreqs considered in y dimension
N = N_x*N_y; %total no. of eigenfreqs considered
NumX = 50; % number of mapping points in x-direction
NumY = 50; % number of mapping points in y-direction
% create X and Y array in 2d
[X,Y] = meshgrid(...
(linspace(0.5*L_y/NumY, L_y - 0.5*L_y/NumY, NumY)), ...
(linspace(0.5*L_x/NumX, L_x - 0.5*L_x/NumX, NumX)));
% modify X and Y array for 3d
XFull = repmat(X, [1 1 N]);
YFull = repmat(Y, [1 1 N]);
% create mode array for X
Mx = ones(NumX, NumY, N_y);
MxFull = [];
for n = 1:N_x
MxFull = cat(3, MxFull, n*Mx);
end
% create mode array for Y
My = ones(NumX, NumY);
MyFull = [];
for n = 1:N_y
MyFull = cat(3, MyFull, n*My);
end
MyFull = repmat(MyFull, [1 1 N_x]);
% modes for each direction
Wx_n = arrayfun(@(x,mx) sin(x .* (mx *pi/L_x)), XFull, MxFull);
Wy_n = arrayfun(@(y,my) sin(y .* (my *pi/L_x)), YFull, MyFull);
% superposition of modes
W_n = Wx_n .* Wy_n;
% plot
figure(1); cla
surface(W_n(:,:,23));
##### 7 CommentiMostra 6 commenti meno recentiNascondi 6 commenti meno recenti
Tom il 20 Dic 2013
I think I may have solved this by using
(linspace(L_y/NumY, L_y, NumY))
(linspace(0.5*L_y/NumY,L_y - 0.5*L_y/NumY,NumY))
Do you think this solution is correct?
Thanks

Accedi per commentare.

### Categorie

Scopri di più su Surface and Mesh Plots in Help Center e File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!