Goodness of fit , residual plot for fminbnd fitting
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
I have the data fitting using fminbnd solver. I am wondering how to evaluate the goodness of the fit and obtain residual plots. I dont see any options to display the residuals for fminbnd solver like other solvers. Below is my code:
t1 = [0:300:28800]'; % input X data
% input Y data
y_obs = [
0
0.0350666
0.170773
0.298962
0.400482
0.481344
0.541061
0.588307
0.626498
0.657928
0.684406
0.705545
0.721963
0.738828
0.753222
0.765903
0.776001
0.786196
0.795698
0.804062
0.81206
0.820732
0.825598
0.832848
0.837778
0.8436
0.848495
0.852999
0.858091
0.863251
0.86657
0.870919
0.875362
0.879617
0.882049
0.884957
0.887106
0.889922
0.894813
0.896395
0.900105
0.903234
0.905787
0.907843
0.909099
0.913799
0.914104
0.916195
0.920424
0.922772
0.923837
0.922742
0.924935
0.927408
0.92851
0.930684
0.930988
0.933917
0.935012
0.938209
0.940926
0.942448
0.943642
0.942436
0.94564
0.946308
0.949709
0.950971
0.951911
0.954338
0.955225
0.958114
0.958801
0.962341
0.963808
0.965617
0.965214
0.966752
0.971954
0.971949
0.973827
0.977233
0.977157
0.980893
0.979747
0.981409
0.984914
0.986015
0.986951
0.990709
0.990882
0.991937
0.992701
0.996347
0.998733
0.999351
1
];
%************
% Guessing the initial assumption d0 by finding the minimum using min function
%Implementing fminbnd instead of lsqnonlin
pfun = @(d) norm( ypred(d, t1) - y_obs);
dsamps=linspace(0,15e-10,50);
[~,imin]=min( arrayfun(pfun,dsamps) );
[best_d,fval,exitflag,output]=fminbnd(pfun,dsamps(imin-1), dsamps(imin+1),...
optimset('TolX',1e-14))
exitflag,
best_d,
%****************
%************
t2 = [0:5/60:8]';
predicted_y = ypred(best_d, t1);
figure(2)
plot(t2, y_obs, 'ro', t2, predicted_y, 'b-');
grid on
set(gca,'XLim',[0 8])
set(gca,'XTick',(0:0.5:8))
ylim([ 0 1.4])
ylabel('At/Ainf')
xlabel('Time in h')
legend({'observed', 'predicted'})
title('fitting upto full 8 hours; thickness = 2.63')
%***************
%Plotting the verification of minimum
figure(1)
fplot(pfun,[0,4e-10])
hold on; plot(best_d*[1,1],ylim,'--rx');
title('Verification of whether minimum was correctly found by fminbnd solver')
hold off
%***** Fitting model equation
function y_pred = ypred(d, t1)
a=0.00263;
gama = 0.01005;
L2 = zeros(14,1);
L3 = zeros(100,1);
L4 = zeros(100,1);
L5 = zeros(100,1);
S= zeros(97,1);
y_pred = zeros(97,1);
% t = 0;
L1 = ((8*gama)/((pi*(1-exp(-2*gama*a)))));
format longE
for t = t1(:).'
for n=0:1:100
L2(n+1) = exp((((2*n + 1)^2)*-d*pi*pi*t)/(4*a*a));
L3(n+1) = (((-1)^n)*2*gama)+(((2*n+1)*pi)*exp(-2*gama*a))/(2*a);
L4(n+1)= ((2*n)+1)*((4*gama*gama)+((((2*n)+1)*pi)/(2*a))^2);
L5(n+1) = ((L2(n+1)*L3(n+1))/L4(n+1));
end
S((t/300) +1) = sum(L5);
y_pred((t/300)+1)= 1 -(L1*S((t/300) +1)); % predicted data
end
end
2 Commenti
Risposta accettata
Adam Danz
il 27 Lug 2021
Modificato: Adam Danz
il 29 Lug 2021
See matlab's documentation on goodness of fit. There are lots of options and you've got all the variables you need to move forward.
The residuals are just the difference between the predicted y-values and the actual y values. Here's how to plot them:
figure()
tiledlayout(2,1)
nexttile
stem(t2, predicted_y-y_obs)
xlabel('t2')
ylabel('residuals')
nexttile()
histogram(predicted_y-y_obs)
xlabel('residual')
ylabel('frequency')

Più risposte (0)
Vedere anche
Categorie
Scopri di più su Cardiology in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!