fsolve

17 visualizzazioni (ultimi 30 giorni)
Liber-T
Liber-T il 17 Giu 2011
Is there a way to accelerate the fsolve function, with the least lost of precision possible. In:
beta(n+1)=fsolve(F,beta(n))
  6 Commenti
Liber-T
Liber-T il 20 Giu 2011
F=@(x)10000000000000*det([0 besselj(0,(sqrt(Ko^2*Ed-(x)^2))*b) (i*bessely(0,sqrt((Ko^2*Ed-(x)^2))*b)+besselj(0,sqrt((Ko^2*Ed-(x)^2))*b)) -(i*bessely(0,sqrt((Ko^2-(x)^2))*b)+besselj(0,sqrt((Ko^2-(x)^2))*b));y(length(t),1) -besselj(0,(sqrt(Ko^2*Ed-(x)^2))*a) -(i*bessely(0,sqrt((Ko^2*Ed-(x)^2))*a)+besselj(0,sqrt((Ko^2*Ed-(x)^2))*a)) 0;0 -Ed*besselj(1,(sqrt(Ko^2*Ed-(x)^2))*b)/((sqrt(Ko^2*Ed-(x)^2))) -Ed*(i*bessely(1,sqrt((Ko^2*Ed-(x)^2))*b)+besselj(1,sqrt((Ko^2*Ed-(x)^2))*b))/((sqrt(Ko^2*Ed-(x)^2))) (i*bessely(1,sqrt((Ko^2-(x)^2))*b)+besselj(1,sqrt((Ko^2-(x)^2))*b))/((sqrt(Ko^2-(x)^2)));-(1-((e^2*ne0*besselj(0,mu1)/(me*Eo))/(omega*(omega-i*v))))*-y(length(t),2)/(((Ko^2*(1-((e^2*ne0*besselj(0,mu1)/(me*Eo))/(omega*(omega-i*v))))-(x)^2))) Ed*besselj(1,(sqrt(Ko^2*Ed-(x)^2))*a)/((sqrt(Ko^2*Ed-(x)^2))) Ed*(i*bessely(1,sqrt((Ko^2*Ed-(x)^2))*a)+besselj(1,sqrt((Ko^2*Ed-(x)^2))*a))/((sqrt(Ko^2*Ed-(x)^2))) 0]);
Liber-T
Liber-T il 20 Giu 2011
s=0.1
t=0.001
f=200000000
%a=0.013;
%b=0.015;
%Ed=4.52;
omega=f*2*pi;
%v/omega=t
v=t*omega;
omegap=omega/s;
Eo=8.85418782*10^-12;
muo=1.25663706*10^-6;
Ko=sqrt((omega^2)*Eo*muo);
Ep=1-((omegap^2)/(omega*(omega-i*v)));
The answer here is 8.4049+0.0038*i

Accedi per commentare.

Risposta accettata

Sean de Wolski
Sean de Wolski il 17 Giu 2011
preallocate beta
beta = zeros(nmax+1,1);
beta(1) = beta_of_1;
for ii = 1:nmax
beta(ii+1) = fsolve(F,beta(ii));
end
EDIT more stuff:
You calculate:
  • 'sqrt((Ko^2-(x)^2))*b': 4x
  • 'sqrt((Ko^2*Ed-(x)^2))*a': 4x
  • the bessel functions multiple times a pop.
Turn your function handle into a function. Make each of these calculations once, then use them multiple times.
  1 Commento
Liber-T
Liber-T il 17 Giu 2011
Thnks, but I already know that trick, is there something else for fsolve?

Accedi per commentare.

Più risposte (1)

Walter Roberson
Walter Roberson il 17 Giu 2011
fsolve() can be much faster if you can constrain the range to search in.
  2 Commenti
Liber-T
Liber-T il 17 Giu 2011
how do I constrain the range
Walter Roberson
Walter Roberson il 20 Giu 2011
Sorry it turns out that fsolve() has no way of constraining ranges. fzero() can operate over an interval, if your function has only one independent variable.

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by