Contenuto principale

Risultati per


Join our celebration of the 20th anniversary of MATLAB Central community! You are invited to enter 2 contests - A Treasure Hunt and a MATLAB Mini Hack - to have fun and win prizes.

How to Play

  • In the Treasure Hunt, complete 10 fun tasks to explore the ‘treasures’ in the community.
  • In the MATLAB Mini Hack, use up to 280 characters of MATLAB code to generate an interesting image. Simply vote for the entries that you like or share your own entries to gain votes.

Prizes

You will have opportunities to win compelling prizes, including special edition T-shirts, customized T-shirts, Amazon gift cards, and virtual badges. Your participation will also bump up our charity donations.

Ready to participate?

Visit the community contests space and choose the contest you’d like to enter. Note that:

  • You need a MathWorks account to participate. If you don’t have a MathWorks account, you can create one at MathWorks sign in .
  • Make sure you follow the contests (click the ‘follow the contests’ button on the top) to get notified for prize information and important announcements.

For the full contest rules, prizes, and terms, see details here .

We hope you enjoy the contests and win big prizes. NOW, LET THE CELEBRATION BEGIN!

Happy New Year, everyone! We hope you enjoyed the Cody contest in 2020, learned new MATLAB skills, and made a friend or two. While the 2020 contest has concluded, the fun and learning never end.

Please take the 1-minute survey to talk about your experience (only 2 required questions). Our goal is to make future contests better and more appealing to you, so your feedback is critical to us.

Thank you in advance and hope to see you again in the 2021 contest.

Chen Lin
Chen Lin
Ultima attività il 1 Ott 2020

We are excited to announce that Cody Contest 2020 starts today! Again, the rule is simple - solve any problem and rate its difficulty. If you have any question, please visit our FAQs page first. Want to know your ranking? Check out the contest leaderboard .

Happy problem-solving! We hope you are a winner.

Chen Lin
Chen Lin
Ultima attività il 23 Gen 2021

Below are some FAQs for the Cody contest 2020. If you have any additional questions, ask your questions by replying to this post. We will keep updating the FAQs.

Q1: If I rate a problem I solved before the contest, will I still get a raffle ticket?

A: Yes. You can rate any problem you have solved, whether it was before or during the contest period.

Q2: When will I receive the contest badges that I've earned?

A: All badges will be awarded after the contest ends.

Q3: How do I know if I’m the raffle winner?

A: If you are a winner, we will contact you to get your name and mailing address. You can find the list of winners on the Cody contest page .

Q4: When will I receive my T-shirt or hat?

A: You will typically receive your prize within a few weeks. It might take longer for international shipping.

Q5: I'm new to Cody. If I have some questions about using Cody, how can I get help?

A: You can ask your question by replying this post. Other community users might help you and we will also monitor the threads. You might also find answers here .

Q6: What do I do if I have a question about a specific problem?

A: If the problem description is unclear, the test suite is broken, or similar concerns arise, post your question(s) as a comment on the specific problem page. If you are having a hard time solving a problem, you can post a comment to your solution attempt (after submitting it). However, do not ask other people to solve problems for you.

Q7: If I find a bug or notice someone is cheating/spamming during the contest, how can I report it?

A: Use Web Site Feedback . Select "MATLAB Central" from the category list.

Q8: Why can't I rate a problem?

A: To rate a problem, you must solve that problem first and have at least 50 total points.

Rik
Rik
Ultima attività il 17 Set 2024

Similar to what has happened with the wishlist threads (#1 #2 #3 #4 #5), the "what frustrates you about MATLAB" thread has become very large. This makes navigation difficult and increases page load times.
So here is the follow-up page.
What should you post where?
Wishlist threads (#1 #2 #3 #4 #5): bugs and feature requests for Matlab Answers
Frustation threads (#1 #2): frustations about usage and capabilities of Matlab itself
Missing feature threads (#1 #2): features that you whish Matlab would have had
Next Gen threads (#1): features that would break compatibility with previous versions, but would be nice to have
@anyone posting a new thread when the last one gets too large (about 50 answers seems a reasonable limit per thread), please update this list in all last threads. (if you don't have editing privileges, just post a comment asking someone to do the edit)
Jan
Jan
Ultima attività il 4 Ott 2024

After reading Rik's comment I looked for a list of Matlab releases and their corresponding features. Wiki: Matlab contains an exhaustive list, but what about having a lean version directly in the forum?
If this is useful, feel free to expand the list and to insert additions. Thank you.
Rik
Rik
Ultima attività il 4 Nov 2022

There are multiple ways to create a graphical user interface (GUI) in Matlab. Which method is the best depends on multiple factors: the complexity of the project, to what extent it should be a long-term solution, on what releases your GUI should work, your available time, your skill level, and probably other factors I'm forgetting.
To keep the thread clear I'll attempt to provide a short outline a few ways in this question, and leave the details for the answers. (@anyone with editing privileges: feel free to update the section below if I missed something important and am slow in editing this question)
---------------------------------------------------------------------------------------------------
GUIDE
GUIDE is probably the first tool new users will encounter. It is very useful for quickly putting something together, but it is otherwise fairly limited. It requires maintaining (and distributing) both a .m and a .fig file. Note that the GUIDE environment will be removed in a future release. After GUIDE is removed, existing GUIDE apps will continue to run in Matlab but they will not be editable in GUIDE. If you're starting a new GUI, don't use GUIDE. If you're updating an existing GUIDE GUI, migrate it to AppDesigner. In R2021a the first step for this removal was taken: all templates except the blank template have been removed.
GUILT
Although I haven't had a detailed look myself, it seems a list like this is not complete without at least mentioning the GUI Layout Toolbox, which is available on the file exchange and offers a lot of customization options.
Programmatic GUIs
You can bypass GUIDE and use the normal figures and functions like uicontrol to build GUIs from code. This makes the design less visual, but more flexible for future additions.
App Designer
The official successor to GUIDE, AppDesigner is not based on functions, but works similar to a class. It uses uifigure and mostly uses graphical elements that are incompatible with 'normal' GUIs that are created with a figure (or .fig).
Dear MATLAB community,
How can I help my close friend who's bad at math and programming learn MATLAB?
He's a final year chemical engineering student who struggles even to plot two functions on the same graph in his computational fluid dynamics class (there was no prereq for matlab skills).
In his first year, I saw him get dragged through the introductory engineering classes which was his first encounter with MATLAB. Students were taught a few rudimentary programming skills and then were expected to make a code for a 'simple' tic-tac-toe game. It took him hours of blank looks and tutoring to even understand the simplest of boolean operators. He was never able to write a working function without the supervision of a friend or tutor. Needless to say, he was permanently scarred by the experience and swore to avoid using it forever.
After 3 years of avoiding MATLAB, he realised how not knowing it hurt him during his final year project. He had to solve a system of pdes to model the performance of a reactor and practically speaking, MATLAB was the most suitable software at hand. He ended up having to get a friend to help him code the equations in while also having to oversimplify his model.
The weird thing is that: most students from his chemical engineering faculty were not expected or encouraged to use MATLAB, almost all of their prior assignments required no use of MATLAB except that infamous first year course, and most of his peers also avoided using MATLAB and resorted to Excel. It is my understanding that Excel cannot match MATLAB's efficiency and clarity when solving calculus problems so it was not uncommon to see extremely long Excel spreadsheets.
Anyway, my friend is, with the help of a friend's past year MATLAB codes, trying to finish up his computational fluid dynamics assignment that's due soon. He finishes university in 2 weeks time.
Even though he knows that not every engineer has to use MATLAB in the workplace, he somehow wishes he was able to learn MATLAB at his glacial pace. I find it such a pity that he was never able to keep up with the pace of learning that was expected which begs the question: are students who are too slow at learning programming better of in a different field of study?
If you've managed to read to the end of this, thank you so much. I just don't know how to help my friend and I'm hoping some of you might be able to suggest how I can help him be better at it. I believe he has potential but needs special help when it comes to MATLAB.
All helpful and constructive suggestions considered,
Thank You All

Hi there! This is kind of an unusual question, but here it goes. I am a big time Matlab enthusiast and I met some of your representatives at Formula Student Germany back in August. There was a booth were your product was showcased but most importantly there was Matlab merchandise such as stickers, rub-on-tattoos and pens with the mathworks logo being handed out. This merchandise is increadibly popular with me and my nerdy friends. But sadly I didnt bring much with me from the event. Is it possible to get ahold some of it? Is it for sale? Are you willing to sponsor some geeky engineering students?

I am new in MATLAB programming. I want to learn matlab . I want to know about is any matlab or simulink contest available. Please answer me. Thanks
Summary:
Dynamically accessing variable names can negatively impact the readability of your code and can cause it to run slower by preventing MATLAB from optimizing it as well as it could if you used alternate techniques. The most common alternative is to use simple and efficient indexing.
Explanation:
Sometimes beginners (and some self-taught professors) think it would be a good idea to dynamically create or access variable names, the variables are often named something like these:
  • matrix1, matrix2, matrix3, matrix4, ...
  • test_20kmh, test_50kmh, test_80kmh, ...
  • nameA, nameB, nameC, nameD,...
Good reasons why dynamic variable names should be avoided:
There are much better alternatives to accessing dynamic variable names:
Note that avoiding eval (and assignin, etc.) is not some esoteric MATLAB restriction, it also applies to many other programming languages as well:
MATLAB Documentation:
If you are not interested in reading the answers below then at least read MATLAB's own documentation on this topic Alternatives to the eval Function, which states "A frequent use of the eval function is to create sets of variables such as A1, A2, ..., An, but this approach does not use the array processing power of MATLAB and is not recommended. The preferred method is to store related data in a single array." Data in a single array can be accessed very efficiently using indexing.
Note that all of these problems and disadvantages also apply to functions load (without an output variable), assignin, evalin, and evalc, and the MATLAB documentation explicitly recommends to "Avoid functions such as eval, evalc, evalin, and feval(fname)".
The official MATLAB blogs explain why eval should be avoided, the better alternatives to eval, and clearly recommend against magically creating variables. Using eval comes out at position number one on this list of Top 10 MATLAB Code Practices That Make Me Cry. Experienced MATLAB users recommend avoiding using eval for trivial code, and have written extensively on this topic.
The community is very helpful, yet I feel really powerless that I cannot find the appropriate way to code, nor find the problems with the codes I have written. I have read numerous books on MATLAB, mostly related with science and engineering applications. Any advice to improve would be greatly appreciated. Thanks.
Jan
Jan
Ultima attività il 9 Ago 2013

Some of Matlab's toolbox functions are affected by magic strings or magic numbers, which are strings or numbers with a deeper meaning besides the normal value. Both are considered as bad programming patters, because they provoke confusions, when the magic keys appear with the normal meaning by accident. See http://en.wikipedia.org/wiki/Anti-pattern
Example 1:
clear('myVariable')
clear('variables')
While the 1st clears the variable myVariable, the later clears all variables. Here 'variables' has a meta-meaning. The problem appears, when 'variables' is an existing variable:
a = 1;
variables = 2;
clear('variables')
disp(a) % >> 1
Only variables is cleared, which cannot be understood directly when its definition is 1000 lines before.
Example 2:
uicontrol('String', 'default')
This creates a button with the empty string '' instead of the expected 'default', because this is the magic string to invoke the default value get(0, 'DefaultUIControlString'). The same concerns properties of other graphic objects also, e.g. the 'name' property of figure or the string of uimenu. There is a workaround which allows the user to display 'default': Simply use '\default'. Unfortunately this is doubled magic, because in consequence it is impossible to display the string '\default'. Obviously a bad idea.
Example 3:
Graphic handles are doubles (although gobject of the new R2013a seems, like this is subject to changes? [EDITED: Yes, it changed with HG2 in R2014a]). But then a handle can be confused with data:
a = axes; % e.g. 0.0048828125
plot(a, 2, '+')
But you cannot draw the point [0.0048828125, 2] by this way, because the 1st input is considered as handle of the parent. Here all possible values of handles are magic. Collisions are very unlikely, but there is no way to avoid them reliably - as long as handles have the type double.
Question:
Which functions are concerned by magic values? What are the pitfalls and workarounds?
I am wondering what others use for those little short-cuts or niceties in MATLAB. I have in mind something you wrote or something somebody else wrote or an underused MW function.
Here are my two favorites.
This is a simple script I use. Here is the entire contents of CLC.m (yes, it is capitalized):
clear all,close all,clc
Very simple, but I use it all the time. Here is another one I use so often that I forget not every machine has it (though every machine should, IMO):
Here is an underused MW function that I occasionally employ when working on someone else's machine. The usual response is, "Wait, what did you just do?"
home
What are some of yours?
Adam Kaas
Adam Kaas
Ultima attività il 6 Giu 2012

As I'm becoming more and more familiar with MATLAB, I'm starting to fall in love with it. I was wondering what are the coolest things that you all know MATLAB can do? As for me so far, the auto-code generation into another language is the coolest thing.
It is not uncommon for students to be assigned questions which they are required to complete "without using any built-in functions". There is not a great deal that can be programmed in MATLAB without using any built-in functions, but a little can be done -- but what, exactly is possible?
What a "built-in function" is, exactly, is open to interpretation. In the below, I refer instead to "publicly visible routines". Keywords (see below) are not publicly visible routines (they are "statements" or components of statements.) Any documented operation or call that invokes a MATLAB-supplied .m or .p or mex file or built-in library to do its work is a publicly visible routines. If you can use documented methods override the normal meaning of a statement or expression in practice by supplying alternate code, then the code probably involves publicly visible routines. If the language design is such that you could use documented methods to override the normal meaning of a statement or expression in theory (such as the behavior of adding two double, the code for which is in practice bundled into an internal MATLAB library), then I would still consider that a call to a publicly visible routine.
A MATLAB-supplied routine that is not documented, which is used for internal MATLAB purposes, could perhaps be held not to be a publicly visible routine, but it certainly would still be a "built-in function".
I exclude from the list any routine which there is no direct way to access, and is only used for internal purposes, such as the memory allocation routines.
This is what I have come up with:
  • the names defined as "keywords" do not in themselves involve function calls to publicly visible routines. These keywords currently include 'break', 'case', 'catch', 'classdef', 'continue', 'else', 'elseif', 'end', 'for', 'function', 'global', 'if', 'otherwise', 'parfor', 'persistent', 'return', 'spmd', 'switch', 'try', 'while'. There is no functional form of any of these: for example, one cannot use global(s) to declare the name contained in the variable "s" to be global. (However, you can define an "end" method; https://www.mathworks.com/help/matlab/matlab_oop/object-end-indexing.html )
  • scalar numeric double precision real-valued constants are handled at parse time, including unary plus and unary minus in front of them
  • scalar numeric double precision constants followed immediately by "i" or "j" create a complex-value constant at parse time, including unary plus and unary minus in front of them
  • whether a complete complex constant with real and imaginary part is handled at parse time is unknown
  • literal character vectors and string objects are handled at parse time
  • in sufficiently new versions, int64() and uint64() around an integer constant is handled at parse time. This was a change from previous versions which handled it at run time (after the integer had been converted to double precision...)
  • whether any other casts such as uint16() or logical() are now handled at parse time is unknown
  • assignment of a compete variable (no indexing, no substructure references, etc.) to a plain variable (no indexing, no substructure references, etc.) does not involve any function calls to publicly visible routines (unless I have overlooked a case involving objects)
  • "if" or "while" applied to a scalar logical constant or to a scalar logical variable does not involve any function calls to publicly visible routines. However, it is not known whether there is any method to construct a logical value without calling a MATLAB routine: "true" and "false" are MATLAB routines, not constants, and logical() of a numeric constant might be handled at run time
  • "for" in which the range is named as a scalar constant or scalar variable do not involve any function calls to publicly visible routines; for example, "for K = 5"
  • defining an anonymous function does not involve any function calls to publicly visible routines
I may have overlooked something due to shortage of chocolate in my bloodstream.
The language described above is not Turing complete, and is not "sufficiently powerful" for the purposes of the Church-Rosser Theorem of general-purpose computability. It is also not possible to do any arithmetic in it, as arithmetic must be reducible to the Peano Postulates, and those require at the very least the ability to compare a value for equality with 0, which in MATLAB would require a call to the MATLAB routine "eq".
Raviteja
Raviteja
Ultima attività il 27 Gen 2012

Hello all,
Please explain good MATLAB programming practice methods. It will help to the guys who are new to programming like me.
Previously I used
for i=1:10
after following some suggestions from this answers pages I learnt to use
for i1=1:100
This is the good way to write programs.
Like this, as a professional programmer, please mention some good programming practice techniques.
It will useful to all!
Capital letters are obtained by capitalizing the LaTeX command for the lowercase version. Capital letters in grey are exceptions which have no LaTeX commands. For example, to produce a capital chi simply type X (this also applies for the lowercase omicron).
When two versions of the lowercase letter are available, a var prefix can be added to obtain the second version. For example, the two versions of epsilon are \epsilon and \varepsilon.
--------------------------------------------------------------------------------------------------------------------------------------------------------
The code used to generate the table:
greeks = ...
{'ALPHA' 'A' '\alpha'
'BETA' 'B' '\beta'
'GAMMA' '\Gamma' '\gamma'
'DELTA' '\Delta' '\delta'
'EPSILON' 'E' {'\epsilon','\varepsilon'}
'ZETA' 'Z' '\zeta'
'ETA' 'H' '\eta'
'THETA' '\Theta' {'\theta','\vartheta'}
'IOTA' 'I' '\iota'
'KAPPA' 'K' '\kappa'
'LAMBDA' '\Lambda' '\lambda'
'MU' 'M' '\mu'
'NU' 'N' '\nu'
'XI' '\Xi' '\xi'
'OMICRON' 'O' 'o'
'PI' '\Pi' {'\pi','\varpi'}
'RHO' 'P' {'\rho','\varrho'}
'SIGMA' '\Sigma' {'\sigma','\varsigma'}
'TAU' 'T' '\tau'
'UPSILON' '\Upsilon' '\upsilon'
'PHI' '\Phi' {'\phi','\varphi'}
'CHI' 'X' '\chi'
'PSI' '\Psi' '\psi'
'OMEGA' '\Omega' '\omega'};
h = figure('units','pixels','pos',[300,100,620,620],'Color','w');
axes('units','pixels','pos',[10,10,600,600],'Xcol','w','Ycol','w',...
'Xtick',[],'Ytick',[],'Xlim',[0 6],'Ylim',[0,4]);
% Loop by column and row
for r = 1:4
for c = 1:6
el = (r-1)*6 + c;
% Title
text(c-0.5,5-r,greeks{el,1},'Fonts',14,'FontN','FixedWidth',...
'Hor','center','Ver','cap')
% Color cap latter in grey or black
if strcmp(greeks{el,2}(1),'\')
clr = [0, 0, 0];
else
clr = [0.65, 0.65, 0.65];
end
% Cap letter
text(c-0.5,4.87-r,['$\rm{' greeks{el,2} '}$'],'Fonts',40,...
'Hor','center','Ver','cap','Interp','Latex','Color',clr)
% Lowercase letter/s (if two variants)
if iscell(greeks{el,3})
text(c-0.75,4.48-r,['$' greeks{el,3}{1} '$'],'Fonts',20,...
'Hor','center','Interp','Latex')
text(c-0.25,4.48-r,['$' greeks{el,3}{2} '$'],'Fonts',20,...
'Hor','center','Interp','Latex')
% Latex command
text(c-0.5,4.3-r,['\' greeks{el,3}{1}],'Fonts',12,'FontN','FixedWidth',...
'Hor','center','Ver','base')
else
text(c-0.5,4.48-r,['$' greeks{el,3} '$'],'Fonts',20,...
'Hor','center','Interp','Latex')
text(c-0.5,4.3-r,['\' greeks{el,3}],'Fonts',12,'FontN','FixedWidth',...
'Hor','center','Ver','base')
end
end
end
% Print to pdf
export_fig greeks.pdf
The link to export_fig.
And here is the link to the pdf on scribd: http://www.scribd.com/doc/159011120/Greek-alphabet-in-latex