Intrinsic dimensionality estimation techniques

Implementation of some state-of-art intrinsic dimensionality estimators.
1,2K download
Aggiornato 24 mag 2013

Visualizza la licenza

Data analysis is a fundamental step to face real Machine-Learning problems, various well-known ML techniques, such as those related to clustering or dimensionality reduction, require the intrinsic dimensionality (id) of the dataset as a parameter.

To the aim of automate the estimation of the id, in literature various techniques has been described, this small toolbox contains the implementation of some state-of-art of them, that is: MLE, MiND_ML, MiND_KL, DANCo, DANCoFit.

For an R implementation see:
http://www.maths.lth.se/matematiklth/personal/johnsson/dimest/

Cita come

Gabriele Lombardi (2025). Intrinsic dimensionality estimation techniques (https://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2011b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e MATLAB Answers
Riconoscimenti

Ispirato: Rand Sphere.zip

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.1.0.0

Added a reference to an R implementation in the description.

1.0.0.0