identify
Syntax
Description
Examples
This example uses a 1.36 GB subset of the Common Voice data set from Mozilla [1]. The data set contains 48 kHz recordings of subjects speaking short sentences.
Download the data set if it doesn't already exist and unzip it into tempdir.
downloadFolder = matlab.internal.examples.downloadSupportFile("audio","commonvoice.zip"); dataFolder = tempdir; unzip(downloadFolder,dataFolder);
Ingest the train set using audioDatastore and, to speed up this example, keep only 20% of each of the speaker files.
trainTable = readtable(dataFolder + fullfile("commonvoice","train","train.tsv"),FileType="text",Delimiter="tab"); adsTrain = audioDatastore(append(fullfile(dataFolder,"commonvoice","train","clips",filesep),trainTable.path,".wav")); idx = splitlabels(trainTable.client_id,0.2); adsTrain = subset(adsTrain,idx{1}); trainLabels = trainTable.client_id(idx{1});
Ingest the validation set using audioDatastore.
valTable = readtable(dataFolder + fullfile("commonvoice","validation","validation.tsv"),FileType="text",Delimiter="tab"); valLabels = valTable.client_id; adsVal = audioDatastore(append(fullfile(dataFolder,"commonvoice","validation","clips",filesep),valTable.path,".wav"));
Split the validation data set into enroll and test sets. Use two utterances for enrollment and the remaining for the test set. Also, exclude any speakers with less than 5 utterances. Generally, the more utterances you use for enrollment, the better the performance of the system. However, most practical applications are limited to a small set of enrollment utterances.
labelCounts = countlabels(valLabels);
labelsToExclude = labelCounts.Label(labelCounts.Count<5);
idxs = splitlabels(valLabels,2,Exclude=labelsToExclude);
adsEnroll = subset(adsVal,idxs{1});
enrollLabels = valLabels(idxs{1});
adsTest = subset(adsVal,idxs{2});
testLabels = valLabels(idxs{2});Create an i-vector system that accepts feature input.
fs = 48e3;
iv = ivectorSystem(SampleRate=fs,InputType="features");Create an audioFeatureExtractor object to extract the gammatone cepstral coefficients (GTCC), the delta GTCC, the delta-delta GTCC, and the pitch from 50 ms periodic Hann windows with 45 ms overlap.
afe = audioFeatureExtractor(... SampleRate=fs, ... Window=hann(round(0.05*fs),"periodic"), ... OverlapLength=round(0.045*fs), ... gtcc=true,gtccDelta=true,gtccDeltaDelta=true,pitch=true);
Extract features from the train and enroll datastores.
xTrain = extract(afe,adsTrain); xEnroll = extract(afe,adsEnroll);
Train both the extractor and classifier using the training set.
trainExtractor(iv,xTrain, ... UBMNumComponents=64, ... UBMNumIterations=5, ... TVSRank=32, ... TVSNumIterations=3);
Calculating standardization factors .....done. Training universal background model ........done. Training total variability space ......done. i-vector extractor training complete.
trainClassifier(iv,xTrain,trainLabels, ... NumEigenvectors=16, ... ... PLDANumDimensions=16, ... PLDANumIterations=5);
Extracting i-vectors ...done. Training projection matrix .....done. Training PLDA model ........done. i-vector classifier training complete.
To calibrate the system so that scores can be interpreted as a measure of confidence in a positive decision, use calibrate.
calibrate(iv,xTrain,trainLabels)
Extracting i-vectors ...done. Calibrating CSS scorer ...done. Calibrating PLDA scorer ...done. Calibration complete.
Enroll the speakers from the enrollment set.
enroll(iv,xEnroll,enrollLabels)
Extracting i-vectors ...done. Enrolling i-vectors ...................done. Enrollment complete.
Evaluate the file-level prediction accuracy on the test set.
numCorrect = 0; reset(adsTest) for index = 1:numel(adsTest.Files) features = extract(afe,read(adsTest)); results = identify(iv,features); trueLabel = testLabels(index); predictedLabel = results.Label(1); isPredictionCorrect = trueLabel==predictedLabel; numCorrect = numCorrect + isPredictionCorrect; end display("File Accuracy: " + round(100*numCorrect/numel(adsTest.Files),2) + " (%)")
"File Accuracy: 97.92 (%)"
References
Input Arguments
i-vector system, specified as an object of type ivectorSystem.
Data to identify, specified as a column vector representing a single-channel (mono) audio signal or a matrix of audio features.
If
InputTypeis set to"audio"when the i-vector system is created,datamust be a column vector with underlying typesingleordouble.If
InputTypeis set to"features"when the i-vector system is created,datamust be a matrix with underlying typesingleordouble. The matrix must consist of audio features where the number of features (columns) is locked the first timetrainExtractoris called and the number of hops (rows) is variable-sized.
Data Types: single | double
Scoring algorithm used by the i-vector system, specified as
"plda", which corresponds to probabilistic linear discriminant
analysis (PLDA), or "css", which corresponds to cosine similarity
score (CSS).
To use "plda", you must train the PLDA model using
trainClassifier. If the PLDA model has been trained, then
scorer defaults to "plda". Otherwise, the
scorer defaults to "css".
Data Types: char | string
Number of candidates to return in tableOut, specified as a
positive scalar.
Note
If you request a number of candidates greater than the number of
labels enrolled in the i-vector system, then all candidates are
returned. If unspecified, the number of candidates defaults to the number of enrolled
labels.
Data Types: single | double
Output Arguments
Candidate labels and corresponding scores, returned as a table. The number of rows
of tableOut is equal to N, the number of
candidates. The candidates are sorted in order of confidence.
Data Types: table
Version History
Introduced in R2021aStarting in R2022a, the identify function throws a warning if the
scores from the i-vector system are not calibrated. Use calibrate to
calibrate the scores.
See Also
trainExtractor | trainClassifier | calibrate | unenroll | enroll | detectionErrorTradeoff | verify | ivector | info | addInfoHeader | release | ivectorSystem | speakerRecognition
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)