This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

tanhLayer

Hyperbolic tangent (tanh) layer

Description

A hyperbolic tangent (tanh) activation layer applies the tanh function on the layer inputs.

Creation

Syntax

layer = tanhLayer
layer = tanhLayer('Name',Name)

Description

layer = tanhLayer creates a hyperbolic tangent layer.

example

layer = tanhLayer('Name',Name) additionally specifies the optional Name property. For example, tanhLayer('Name','tanh1') creates a tanh layer with the name 'tanh1'.

Properties

expand all

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

Input names of the layer. This layer accepts a single input only.

Data Types: cell

Number of outputs of the layer. This layer has a single output only.

Data Types: double

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

collapse all

Create a hyperbolic tangent (tanh) layer with the name 'tanh1'.

layer = tanhLayer('Name','tanh1')
layer = 
  TanhLayer with properties:

    Name: 'tanh1'

  Show all properties

Include a tanh layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
    batchNormalizationLayer
    tanhLayer
    
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32)
    batchNormalizationLayer
    tanhLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             16 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization     Batch normalization
     4   ''   Tanh                    Hyperbolic tangent
     5   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Convolution             32 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     7   ''   Batch Normalization     Batch normalization
     8   ''   Tanh                    Hyperbolic tangent
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

Introduced in R2019a