estimatePortMoments
Estimate moments of portfolio returns for Portfolio object
Description
[
estimate moments of portfolio returns for a prsk
,pret
]
= estimatePortMoments(obj
,pwgt
)Portfolio
object.
For details on the workflow, see Portfolio Object Workflow.
The estimate of port moments is specific to mean-variance portfolio optimization and computes the mean and standard deviation (which is the square-root of variance) of portfolio returns.
Examples
Identify the Range of Risks and Returns for Efficient Portfolios for a Portfolio Object
Given portfolio p
, use the estimatePortMoments
function to show the range of risks and returns for efficient portfolios.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt = estimateFrontierLimits(p); [prsk, pret] = estimatePortMoments(p, pwgt); disp([prsk, pret]);
0.0769 0.0590 0.3500 0.1800
Identify the Range of Risks and Returns for Efficient Portfolios Portfolio
Object with Integrality Constraints
Create a Portfolio
object for three assets.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ]; AssetCovar = [ 0.00324625 0.00022983 0.00420395; 0.00022983 0.00049937 0.00019247; 0.00420395 0.00019247 0.00764097 ]; p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar); p = setDefaultConstraints(p);
Use setBounds
with semi-continuous constraints to set xi=0
or 0.02
<=xi
<=0.5
for all i=1
,...NumAssets
.
p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3);
When working with a Portfolio
object, the setMinMaxNumAssets
function enables you to set up cardinality constraints for a long-only portfolio. This sets the cardinality constraints for the Portfolio
object, where the total number of allocated assets satisfying the nonzero semi-continuous constraints are between MinNumAssets
and MaxNumAssets
. By setting MinNumAssets
=MaxNumAssets
=2, only two of the three assets are invested in the portfolio.
p = setMinMaxNumAssets(p, 2, 2);
Use estimatePortMoments
to estimate moments of portfolio returns for a Portfolio
object.
pwgt = estimateFrontierLimits(p); [prsk, pret] = estimatePortMoments(p, pwgt)
prsk = 2×1
0.0324
0.0695
pret = 2×1
0.0072
0.0119
The estimatePortMoments
function uses the MINLP solver to solve this problem. Use the setSolverMINLP
function to configure the SolverType
and options.
p.solverOptionsMINLP
ans = struct with fields:
MaxIterations: 1000
AbsoluteGapTolerance: 1.0000e-07
RelativeGapTolerance: 1.0000e-05
NonlinearScalingFactor: 1000
ObjectiveScalingFactor: 1000
Display: 'off'
CutGeneration: 'basic'
MaxIterationsInactiveCut: 30
ActiveCutTolerance: 1.0000e-07
IntMainSolverOptions: [1x1 optim.options.Intlinprog]
NumIterationsEarlyIntegerConvergence: 30
ExtendedFormulation: 0
NumInnerCuts: 10
NumInitialOuterCuts: 10
Calculate Portfolio Weights For a Target Risk Level
The Portfolio
object is able to find an efficient portfolio with respect to a specified target risk.
Load Portfolio
Load a vector of expected returns and a covariance matrix for 30 stocks.
load StockStats
Create Portfolio
Object with Default Constraints
The default constraints for a Portfolio
object are that it is a long-only portfolio and that it is 100% invested. Many other constraint types are possible.
P = Portfolio('mean',expRet,'covar',expCov); P = setDefaultConstraints(P);
Plot Full Efficient Frontier
Use the plotFrontier
function with the Portfolio
object to visualize the full frontier. Other functions exist that allow you to probe into particular portfolios along the frontier.
P.plotFrontier
Capture Upper and Lower Bounds of Portfolio Risks and Returns
It is useful to know what are the upper and lower limits of the portfolio moments along the efficient frontier. This information allows you to determine what are feasible targets. Use the estimateFrontierLimits
function with the Portfolio
object to identify the weights at these extremes. Then you can use the estimatePortMoments
function Portfolio
object to find the limiting moments.
P_Weights1 = P.estimateFrontierLimits; [P_risklimits, P_returnlimits] = P.estimatePortMoments(P_Weights1)
P_risklimits = 2×1
0.0786
0.2868
P_returnlimits = 2×1
0.0954
0.2370
Estimate Efficient Portfolio with Target Return
Select a target return for the portfolio somewhere in the feasible region. You can estimate its makeup with estimateFrontierByRisk
and then confirm its moments using estimatePortMoments
.
targetReturn = 0.15; P_Weights2 = P.estimateFrontierByReturn(targetReturn); [P_risk2, P_return2] = P.estimatePortMoments(P_Weights2)
P_risk2 = 0.1068
P_return2 = 0.1500
The return matches the targetReturn
value and the risk is in agreement with the efficient frontier plot.
Estimate Efficient Portfolio with Target Risk
The Portfolio
object is able to find an efficient portfolio with a specified target risk.
targetRisk = 0.2; P_Weights3 = P.estimateFrontierByRisk(targetRisk); [P_risk3, P_return3] = P.estimatePortMoments(P_Weights3)
P_risk3 = 0.2000
P_return3 = 0.2182
Another useful feature of the estimateFrontierByReturn
and estimateFrontierByRisk
functions is what happens if you specify an infeasible (too high or too low) target. In this case, these functions provide a warning message to suggest the best solution.
Input Arguments
obj
— Object for portfolio
object
Object for portfolio, specified using a Portfolio
object. For more information on creating a portfolio object, see Portfolio
.
Data Types: object
pwgt
— Collection of portfolios
matrix
Collection of portfolios, specified as a
NumAssets
-by-NumPorts
matrix where
NumAssets
is the number of assets in the universe and
NumPorts
is the number of portfolios in the
collection of portfolios.
Data Types: double
Output Arguments
prsk
— Estimates for standard deviations of portfolio returns for each portfolio in pwgt
vector
Estimates for standard deviations of portfolio returns for each portfolio
in pwgt
, returned as a NumPorts
vector.
prsk
is returned for a Portfolio
input object (obj
). If the asset returns provided to
the Portfolio
object are daily returns, then the output
(prsk
) for the standard deviation of the portfolio(s)
is also in daily terms.
pret
— Estimates for means of portfolio returns for each portfolio in pwgt
vector
Tips
You can also use dot notation to estimate the moments of portfolio returns.
[prsk, pret] = obj.estimatePortMoments(pwgt);
Version History
Introduced in R2011a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)