Workflow to Create and Price a Portfolio of Instruments
Price a portfolio of instruments — each with their own associated pricer. This workflow is common in risk situations where you may have a portfolio of securities that need to be valued.
Create and Price Portfolio of Instruments
Use finportfolio
and pricePortfolio
to create and price a portfolio of interest-rate and equity instruments. The portfolio contains a vanilla FixedBond
, an OptionEmbeddedFixedBond
, a Vanilla
European call option, a Vanilla
American call option, and an Asian
call option.
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2018,9,15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates);
Create the Instrument Objects
Use fininstrument
to create the instrument objects.
% Vanilla FixedBond CouponRate = 0.0325; Maturity = datetime(2038,3,15); Period = 1; VanillaBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,... 'Period',Period,'Name',"VanillaBond")
VanillaBond = FixedBond with properties: CouponRate: 0.0325 Period: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 15-Mar-2038 Name: "VanillaBond"
% OptionEmbeddedBond Maturity = datetime(2024,9,15); CouponRate = 0.035; Strike = 100; ExerciseDates = datetime(2023,9,15); CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); Period = 1; CallableBond = fininstrument("OptionEmbeddedFixedBond", "Maturity",Maturity,... 'CouponRate',CouponRate,'Period',Period, ... 'CallSchedule',CallSchedule,... 'Name',"CallableBond"); % Vanilla European call option ExerciseDate = datetime(2022,1,1); Strike = 96; OptionType = 'call'; CallOpt = fininstrument("Vanilla",'ExerciseDate',ExerciseDate,'Strike',Strike,... 'OptionType',OptionType, 'Name',"EuropeanCallOption")
CallOpt = Vanilla with properties: OptionType: "call" ExerciseStyle: "european" ExerciseDate: 01-Jan-2022 Strike: 96 Name: "EuropeanCallOption"
% Vanilla American call option ExerciseDate = datetime(2023,1,1); Strike = 97; OptionType = 'call'; CallOpt_American = fininstrument("Vanilla",'ExerciseDate',ExerciseDate,'Strike',Strike,... 'OptionType',OptionType, 'ExerciseStyle', "american", ... 'Name',"AmericanCallOption")
CallOpt_American = Vanilla with properties: OptionType: "call" ExerciseStyle: "american" ExerciseDate: 01-Jan-2023 Strike: 97 Name: "AmericanCallOption"
% Asian call option ExerciseDate = datetime(2023,1,1); Strike = 102; OptionType = 'call'; CallOpt_Asian = fininstrument("Asian",'ExerciseDate',ExerciseDate,'Strike',Strike,... 'OptionType',OptionType,'Name',"AsianCall")
CallOpt_Asian = Asian with properties: OptionType: "call" Strike: 102 AverageType: "arithmetic" AveragePrice: 0 AverageStartDate: NaT ExerciseStyle: "european" ExerciseDate: 01-Jan-2023 Name: "AsianCall"
Create Model Objects
Use finmodel
to create HullWhite
and BlackScholes
model objects.
% Create Hull-White model Vol = 0.01; Alpha = 0.1; HWModel = finmodel("hullwhite",'alpha',Alpha,'sigma',Vol); % Create Black-Scholes model Vol = .1; SpotPrice = 95; BlackScholesModel = finmodel("BlackScholes",'Volatility',Vol);
Create Pricer Objects
Use finpricer
to create Discount
, IRTree
, BlackScholes
, Levy
, and BjerksundStensland
pricer objects and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
% Create Discount pricer DiscPricer = finpricer("Discount","DiscountCurve",ZeroCurve); % Create Hull-White tree pricer TreeDates = Settle + calyears(1:30); HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,... 'TreeDates',TreeDates'); % Create BlackScholes, Levy, and BjerksundStensland pricers BLSPricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,'SpotPrice',SpotPrice); LevyPricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,... 'SpotPrice',SpotPrice,'PricingMethod',"Levy"); BJSpricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,... 'SpotPrice',SpotPrice,'PricingMethod',"BjerksundStensland");
Create finportfolio
Object
Create a finportfolio
object that contains all of the instrument and pricer objects using finportfolio
.
myPort = finportfolio([VanillaBond CallableBond CallOpt CallOpt_American CallOpt_Asian]',...
[DiscPricer HWTreePricer BLSPricer BJSpricer LevyPricer]')
myPort = finportfolio with properties: Instruments: [5x1 fininstrument.FinInstrument] Pricers: [5x1 finpricer.FinPricer] PricerIndex: [5x1 double] Quantity: [5x1 double]
Price Portfolio
Use pricePortfolio
to compute the price and sensitivities for the portfolio and the instruments in the portfolio.
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(myPort)
PortPrice = 237.3275
InstPrice = 5×1
107.4220
110.8389
7.5838
8.8705
2.6123
PortSens=1×8 table
Price Delta Gamma Lambda Vega Theta Rho DV01
______ _______ _____ ______ ______ _______ ______ ______
237.33 -546.39 2840 26.354 124.28 -4.0673 418.68 0.1579
InstSens=5×8 table
Price Delta Gamma Lambda Vega Theta Rho DV01
______ _______ ________ ______ _______ ________ ______ ______
VanillaBond 107.42 NaN NaN NaN NaN NaN NaN 0.1579
CallableBond 110.84 -547.9 2839.9 NaN -62.532 NaN NaN NaN
EuropeanCallOption 7.5838 0.57026 0.022762 7.1435 67.763 -1.3962 153.68 NaN
AmericanCallOption 8.8705 0.5845 0.019797 6.2597 76.808 -1.8677 200.68 NaN
AsianCall 2.6123 0.35611 0.032053 12.95 42.238 -0.80342 64.31 NaN
See Also
fininstrument
| finmodel
| finpricer