ifftn
Multidimensional inverse fast Fourier transform
Description
X = ifftn(
returns
the multidimensional
discrete inverse Fourier transform of an N-D array using a
fast Fourier transform algorithm. The N-D inverse transform is equivalent
to computing the 1-D inverse transform along each dimension of Y
)Y
.
The output X
is the same size as Y
.
X = ifftn(
truncates Y
,sz
)Y
or
pads Y
with trailing zeros before taking the inverse
transform according to the elements of the vector sz
.
Each element of sz
defines the length of the corresponding
transform dimension. For example, if Y
is a 5-by-5-by-5
array, then X = ifftn(Y,[8 8 8])
pads each dimension
with zeros, resulting in an 8-by-8-by-8 inverse transform X
.
Examples
Input Arguments
More About
Algorithms
The
ifftn
function tests whether the multidimensional arrayY
is conjugate symmetric. IfY
is conjugate symmetric, then the inverse transform computation is faster and the output is real.A function is conjugate symmetric if . However, the fast Fourier transform of a multidimensional time-domain signal has one half of its spectrum in positive frequencies and the other half in negative frequencies, with the first row, column, page, and so on, reserved for the zero frequencies. For this reason, for example, a 3-D array
Y
is conjugate symmetric when all of these conditions are true:Y(1,1,2:end)
is conjugate symmetric, orY(1,1,2:end) = conj(Y(1,1,end:-1:2))
Y(1,2:end,1)
is conjugate symmetric, orY(1,2:end,1) = conj(Y(1,end:-1:2,1))
Y(2:end,1,1)
is conjugate symmetric, orY(2:end,1,1) = conj(Y(end:-1:2,1,1))
Y(1,2:end,2:end)
is conjugate centrosymmetric, orY(1,2:end,2:end) = conj(Y(1,end:-1:2,end:-1:2))
Y(2:end,1,2:end)
is conjugate centrosymmetric, orY(2:end,1,2:end) = conj(Y(end:-1:2,1,end:-1:2))
Y(2:end,2:end,1)
is conjugate centrosymmetric, orY(2:end,2:end,1) = conj(Y(end:-1:2,end:-1:2,1))
Y(2:end,2:end,2:end)
is conjugate centrosymmetric, orY(2:end,2:end,2:end) = conj(Y(end:-1:2,end:-1:2,end:-1:2))
Extended Capabilities
Version History
Introduced before R2006a