plannerRRT
Description
The plannerRRT
object creates a rapidly-exploring random tree
(RRT) planner for solving geometric planning problems. RRT is a tree-based motion planner that
builds a search tree incrementally from samples randomly drawn from a given state space. The
tree eventually spans the search space and connects the start state to the goal state. The
general tree growing process is as follows:
The planner samples a random state xrand in the state space.
The planner finds a state xnear that is already in the search tree and is closest (based on the distance definition in the state space) to xrand.
The planner expands from xnear towards xrand, until a state xnew is reached.
Then new state xnew is added to the search tree.
For geometric RRT, the expansion and connection between two states can be found analytically without violating the constraints specified in the state space of the planner object.
Creation
Description
creates an RRT planner from a state space object, planner
= plannerRRT(stateSpace
,stateVal
)stateSpace
, and a
state validator object, stateVal
. The state space of
stateVal
must be the same as stateSpace
.
stateSpace
and stateVal
also sets the
StateSpace and
StateValidator
properties of the planner
.
sets properties using one or more name-value arguments in addition to the input arguments
in the previous syntax. You can specify the StateSampler,
MaxNumTreeNodes,
MaxIterations,
MaxConnectionDistance, GoalReachedFcn,
and GoalBias
properties as name-value arguments.planner
= plannerRRT(___,Name=Value
)
Properties
Examples
References
[1] S.M. Lavalle and J.J. Kuffner. "Randomized Kinodynamic Planning." The International Journal of Robotics Research. Vol. 20, Number 5, 2001, pp. 378 – 400.
Extended Capabilities
Version History
Introduced in R2019bSee Also
Objects
plannerRRTStar
|plannerBiRRT
|stateSpaceReedsShepp
|stateSpaceDubins
|stateSpaceSE2
|stateSpaceSE3
|validatorOccupancyMap
|validatorVehicleCostmap
|validatorOccupancyMap3D
|stateSamplerUniform