rdivide, ./
Syntax
Description
Examples
Divide a Quaternion Array by a Real Scalar
Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.
A = quaternion([1:4;5:8])
A = 2x1 quaternion array
1 + 2i + 3j + 4k
5 + 6i + 7j + 8k
B = 2; C = A./B
C = 2x1 quaternion array
0.5 + 1i + 1.5j + 2k
2.5 + 3i + 3.5j + 4k
Divide a Quaternion Array by Another Quaternion Array
Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion array.
q1 = quaternion(magic(4)); A = reshape(q1,2,2)
A = 2x2 quaternion array
16 + 2i + 3j + 13k 9 + 7i + 6j + 12k
5 + 11i + 10j + 8k 4 + 14i + 15j + 1k
q2 = quaternion([1:4;3:6;2:5;4:7]); B = reshape(q2,2,2)
B = 2x2 quaternion array
1 + 2i + 3j + 4k 2 + 3i + 4j + 5k
3 + 4i + 5j + 6k 4 + 5i + 6j + 7k
C = A./B
C = 2x2 quaternion array
2.7 - 0.1i - 2.1j - 1.7k 2.2778 + 0.092593i - 0.46296j - 0.57407k
1.8256 - 0.081395i + 0.45349j - 0.24419k 1.4524 - 0.5i + 1.0238j - 0.2619k
Input Arguments
A
— Dividend
scalar | vector | matrix | multidimensional array
Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.
A
and B
must have compatible sizes. In the
simplest cases, they can be the same size or one can be a scalar. Two inputs have
compatible sizes if, for every dimension, the dimension sizes of the inputs are the same
or one of the dimensions is 1.
Data Types: quaternion
| single
| double
B
— Divisor
scalar | vector | matrix | multidimensional array
Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.
A
and B
must have compatible sizes. In the
simplest cases, they can be the same size or one can be a scalar. Two inputs have
compatible sizes if, for every dimension, the dimension sizes of the inputs are the same
or one of the dimensions is 1.
Data Types: quaternion
| single
| double
Output Arguments
C
— Result
scalar | vector | matrix | multidimensional array
Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion
Algorithms
Quaternion Division
Given a quaternion and a real scalar p,
Note
For a real scalar p, A./p = A.\p.
Quaternion Division by a Quaternion Scalar
Given two quaternions A and B of compatible sizes,
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2019b
Apri esempio
Si dispone di una versione modificata di questo esempio. Desideri aprire questo esempio con le tue modifiche?
Comando MATLAB
Hai fatto clic su un collegamento che corrisponde a questo comando MATLAB:
Esegui il comando inserendolo nella finestra di comando MATLAB. I browser web non supportano i comandi MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)