Main Content

phitheta2uvpat

Convert radiation pattern from phi/theta form to u/v form

Description

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta) expresses the antenna radiation pattern pat_phitheta in u/v space coordinates instead of φ/θ angle coordinates. pat_phitheta samples the pattern at φ angles in phi and θ angles in theta. The pat_uv matrix uses a default grid that covers u values from –1 to 1 and v values from –1 to 1. In this grid, pat_uv is uniformly sampled with a step size of 0.01 for u and v. The function interpolates to estimate the response of the antenna at a given direction. Values in pat_uv are NaN for u and v values outside the unit circle because u and v are undefined outside the unit circle.

example

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v) uses vectors u and v to specify the grid at which to sample pat_uv. To avoid interpolation errors, u should cover the range [–1, 1] and v should cover the range [–1, 1].

example

[pat_uv,u_pat,v_pat] = phitheta2uvpat(___) returns vectors containing the u and v coordinates at which pat_uv samples the pattern, using any of the input arguments in the previous syntaxes.

example

Examples

collapse all

Convert a radiation pattern to u-v form, with the u and v coordinates spaced by 0.01.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to u-v form.

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta);

Convert a radiation pattern to u-v coordinates, with the u and v coordinates spaced by 0.01.

Define the pattern in terms of ϕ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to u-v coordinates. Store the u and v coordinates for use in plotting.

[pat_uv,u,v] = phitheta2uvpat(pat_phitheta,phi,theta);

Plot the result.

H = surf(u,v,pat_uv);
H.LineStyle = 'none';
xlabel('u');
ylabel('v');
zlabel('Pattern');

Figure contains an axes object. The axes object with xlabel u, ylabel v contains an object of type surface.

Convert a radiation pattern to u-v coordinates, with the u and v coordinates spaced by 0.05.

Define the pattern in terms of ϕ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Define the set of u and v coordinates at which to sample the pattern. Then, convert the pattern.

u = -1:0.05:1;
v = -1:0.05:1;
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v);

Plot the result.

H = surf(u,v,pat_uv);
H.LineStyle = 'none';
xlabel('u');
ylabel('v');
zlabel('Pattern');

Figure contains an axes object. The axes object with xlabel u, ylabel v contains an object of type surface.

Input Arguments

collapse all

Antenna radiation pattern in phi/theta form, specified as a Q-by-P matrix. pat_phitheta samples the 3-D magnitude pattern in decibels, in terms of φ and θ angles. P is the length of the phi vector, and Q is the length of the theta vector.

Data Types: double

Phi angles at which pat_phitheta samples the pattern, specified as a vector of length P. Each φ angle is in degrees, between 0 and 180.

Data Types: double

Theta angles at which pat_phitheta samples the pattern, specified as a vector of length Q. Each θ angle is in degrees, between 0 and 90. Such angles are in the hemisphere for which u and v are defined.

Data Types: double

u coordinates at which pat_uv samples the pattern, specified as a vector of length L. Each u coordinate is between –1 and 1.

Data Types: double

v coordinates at which pat_uv samples the pattern, specified as a vector of length M. Each v coordinate is between –1 and 1.

Data Types: double

Output Arguments

collapse all

Antenna radiation pattern in u/v form, returned as an M-by-L matrix. pat_uv samples the 3-D magnitude pattern in decibels, in terms of u and v coordinates. L is the length of the u vector, and M is the length of the v vector. Values in pat_uv are NaN for u and v values outside the unit circle because u and v are undefined outside the unit circle.

u coordinates at which pat_uv samples the pattern, returned as a vector of length L.

v coordinates at which pat_uv samples the pattern, returned as a vector of length M.

More About

collapse all

Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees. The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.

The coordinate transformations between φ/θ and az/el are described by the following equations

sinel=sinϕsinθtanaz=cosϕtanθcosθ=coselcosaztanϕ=tanel/sinaz

U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles, as follows:

u=sinθcosϕv=sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

To convert azimuth and elevation to u and v use the transformation

u=coselsinazv=sinel

which is valid only in the range abs(az)≤=90.

The values of u and v satisfy the inequalities

1u11v1u2+v21

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ=v/usinθ=u2+v2

The azimuth and elevation angles can also be written in terms of u and v:

sinel=vtanaz=u1u2v2

Extended Capabilities

Version History

Introduced in R2012a