summary
Description
displays a summary report of different claims estimates using the
Bornhuetter-Ferguson technique. The report displays the latest diagonal of both
reported and paid development triangles, projected ultimate claims, cases
outstanding, IBNR claims, and total unpaid claims estimates.unpaidClaimsEstimateTable
= summary(bf
)
Examples
Generate Summary Report for bornhuetterFerguson
Object
Generate a summary report for a bornhuetterFerguson
object containing simulated insurance claims data.
load InsuranceClaimsData.mat;
head(data)
OriginYear DevelopmentYear ReportedClaims PaidClaims __________ _______________ ______________ __________ 2010 12 3995.7 1893.9 2010 24 4635 3371.2 2010 36 4866.8 4079.1 2010 48 4964.1 4487 2010 60 5013.7 4711.4 2010 72 5038.8 4805.6 2010 84 5059 4853.7 2010 96 5074.1 4877.9
Use developmentTriangle
to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle
objects, one for reported claims and one for paid claims.
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')
dT_reported = developmentTriangle with properties: Origin: {10x1 cell} Development: {10x1 cell} Claims: [10x10 double] LatestDiagonal: [10x1 double] Description: "" TailFactor: 1 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1] SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')
dT_paid = developmentTriangle with properties: Origin: {10x1 cell} Development: {10x1 cell} Claims: [10x10 double] LatestDiagonal: [10x1 double] Description: "" TailFactor: 1 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1] SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]
Create an expectedClaims
object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000]; ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec = expectedClaims with properties: ReportedTriangle: [1x1 developmentTriangle] PaidTriangle: [1x1 developmentTriangle] EarnedPremium: [10x1 double] InitialClaims: [10x1 double] CaseOutstanding: [10x1 double] EstimatedClaimsRatios: [10x1 double] SelectedClaimsRatios: [10x1 double]
Create a bornhuetterFerguson
object with reported claims, paid claims, and expected claims to calculate ultimate claims, cases outstanding, IBNR claims, and unpaid claims estimates.
bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)
bf = bornhuetterFerguson with properties: ReportedTriangle: [1x1 developmentTriangle] PaidTriangle: [1x1 developmentTriangle] ExpectedClaims: [10x1 double] PercentUnreported: [10x1 double] PercentUnpaid: [10x1 double] CaseOutstanding: [10x1 double]
Use summary
to display the latest diagonal of both reported and paid development triangles, projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates for a bornhuetterFerguson
object.
unpaidClaimsEstimateTable = summary(bf)
unpaidClaimsEstimateTable=11×9 table
Reported Claims Paid Claims Projected Ultimate Reported Claims Projected Ultimate Paid Claims Case Outstanding IBNR with Reported Claims IBNR with Paid Claims Total with Reported Claims Total with Paid Claims
_______________ ___________ __________________________________ ______________________________ ________________ _________________________ _____________________ __________________________ ______________________
2010 5089.4 4892.6 5089.4 4892.6 196.79 0 -196.79 196.79 0
2011 5179.9 5134.4 5185.1 5139.6 45.46 5.1629 -40.311 50.623 5.149
2012 5625.4 5512.3 5642.1 5529 113.15 16.72 -96.432 129.87 16.718
2013 5803.7 5728.9 5838.4 5775 74.83 34.696 -28.65 109.53 46.18
2014 5878.7 5759.1 5935.8 5862.5 119.58 57.155 -16.162 176.74 103.42
2015 5772.8 5763.6 5861.7 5979.3 9.2 88.864 206.43 98.064 215.63
2016 5714.3 5472.4 5863.9 5913.9 241.88 149.62 199.61 391.5 441.49
2017 5854.4 5171.2 6155 6105.6 683.23 300.57 251.12 983.8 934.35
2018 5495.1 4386.1 6106.9 6161.4 1109 611.8 666.3 1720.8 1775.3
2019 4945.9 2764.8 6496.8 6660.6 2181.1 1550.9 1714.7 3732 3895.8
Total 55360 50585 58175 58019 4774.2 2815.4 2659.8 7589.7 7434
Input Arguments
bf
— Bornhuetter-Ferguson
bornhuetterFerguson
object
Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson
object.
Data Types: object
Output Arguments
unpaidClaimsEstimateTable
— Report of claims estimates obtained using the Bornhuetter-Ferguson technique
table
Report of claims estimates obtained using the Bornhuetter-Ferguson technique, returned as a table.
Version History
Introduced in R2020b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)