How to solve symbolic nonlinear equations with constrains
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Hello!
I'd like to solve this system of equations:
function F = equationsSystem(sol)
F = [ (16*sol(1))/7 + (16*sol(2))/7 - 16/7;
- (16*sol(1)*sol(3))/7 - (16*sol(2)*sol(4))/7;
(16*sol(1)*sol(3)^2)/7 + (16*sol(2)*sol(4)^2)/7 + 2 ];
end
My constrains are:
sol(3) > 0
sol(4) > sol(3)
I'd like to have an answer like: sol(1), sol(2), sol(4) function of sol(3). How can I do this in Matlab?
0 Commenti
Risposte (1)
Star Strider
il 8 Mar 2014
I suggest:
syms x y z t
sys = [2.286*x+2.286*y-2.286, -2.286*x*z-2.286*y*t];
Sol = solve(sys)
Sol_x = Sol.x
Sol_y = Sol.y
to produce this:
Sol_x =
t/(t - z)
Sol_y =
-z/(t - z)
Only x and y are common to both equations, so MATLAB solves for them in terms of the other variables, z and t.
Since z and t only appear in the second equation, use it to solve for them:
Sol_z = solve(sys(2), z)
produces:
Sol_z =
-(t*y)/x
similarly:
Sol_t = solve(sys(2), t)
produces:
Sol_t =
-(x*z)/y
3 Commenti
Star Strider
il 8 Mar 2014
Modificato: Star Strider
il 9 Mar 2014
The numerical result is highly dependent on your starting points. There appear to be a number of solutions:
% Original eqn: f = [2.286*x+2.286*y-2.286, -2.286*x*z-2.286*y*t]
% p(1) = x, p(2) = y, p(3) = z, p(4) = t
f = @(p) [2.286*p(1)+2.286*p(2)-2.286, -2.286*p(1)*p(3)-2.286*p(2)*p(4)]
opts = optimoptions('fsolve', 'MaxFunEvals',10000, 'MaxIter',10000);
s = fsolve(f, 100*ones(4,1), opts)
Your system has an infinity of solutions in {z,t}. I apologise for not guessing the ones you were thinking of.
Star Strider
il 9 Mar 2014
So, you want sol1, sol2, and sol4 to be functions of sol3?
Let X = sol3, and solve for sol1, sol2, and sol4.
syms X
sol = sym('sol', [1 4])
assume(sol(4) > X)
assumeAlso(sol(4) > sol(3))
assumeAlso(sol(3) > 0)
assumeAlso(X > 0)
F = [ (16*sol(1))/7 + (16*sol(2))/7 - 16/7;
- (16*sol(1)*sol(3))/7 - (16*sol(2)*sol(4))/7;
(16*sol(1)*sol(3)^2)/7 + (16*sol(2)*sol(4)^2)/7 + 2 ];
F = subs(F, sol(3), X)
Sol = solve(F)
Sol_1 = simplify(Sol.sol1)
Sol_2 = simplify(Sol.sol2)
Sol_4 = simplify(Sol.sol4)
This produces:
Sol_1 =
-7/(8*X^2 - 7)
Sol_2 =
(8*X^2)/(8*X^2 - 7)
Sol_4 =
7/(8*X)
Vedere anche
Categorie
Scopri di più su Equation Solving in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!