How to fit a defined function?

13 visualizzazioni (ultimi 30 giorni)
Sourabh Jain
Sourabh Jain il 10 Nov 2022
Commentato: Star Strider il 10 Nov 2022

I want to fit a custom function to my experimental data. For simplicity, I have some arbitary x & y values and a very simple linear function. I write the following code:

clear all;

x = [1 2 3 4 5]'; % x data
y = [.8 4 10 18 23]'; % y data

Y = lsqcurvefit(fun,1,x,y) % fitting function 'fun' defined below to find parameter 'a'

function y = fun(a,x)
y = a*x; % just a simple function for example, in actual problem, it is a long complicated function with various parameters
end

I get the following error: 'Not enough input arguements.'

I know this particular simple function can be defined as anonymous function and be fitted but I don't it that way.

Risposta accettata

Star Strider
Star Strider il 10 Nov 2022
The ‘fun’ function must be presented to lsqcurvefit as a function handle using the ‘@’ operator —
x = [1 2 3 4 5]'; % x data
y = [.8 4 10 18 23]'; % y data
Y = lsqcurvefit(@fun,1,x,y) % fitting function 'fun' defined below to find parameter 'a'
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
Y = 4.1055
function y = fun(a,x)
y = a*x; % just a simple function for example, in actual problem, it is a long complicated function with various parameters
end
See What Is a Function Handle? for details.
.
  2 Commenti
Sourabh Jain
Sourabh Jain il 10 Nov 2022
Thank you Star Strider for your answer. It solved my problem.
Star Strider
Star Strider il 10 Nov 2022
As always, my pleasure!

Accedi per commentare.

Più risposte (2)

VBBV
VBBV il 10 Nov 2022
Modificato: VBBV il 10 Nov 2022
To define a and then call in function
  2 Commenti
VBBV
VBBV il 10 Nov 2022
Then use @
Y = lsqcurvefit(@fun,1,x,y)
Sourabh Jain
Sourabh Jain il 10 Nov 2022
Thank you for your respone, it helped me.

Accedi per commentare.


Torsten
Torsten il 10 Nov 2022
Modificato: Torsten il 10 Nov 2022
A simpler way for this problem, but I guess your "real" model is more complicated:
x = [1 2 3 4 5]'; % x data
y = [.8 4 10 18 23]'; % y data
a = x\y
a = 4.1055
  1 Commento
Sourabh Jain
Sourabh Jain il 10 Nov 2022
Thank you Torsten for this intelligent answer, I really like your perspective.
Yes, my actual problem is not so simple, it is a transfer matrix model.

Accedi per commentare.

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Tag

Prodotti


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by