Value for Function with 2nd order Central difference scheme

17 visualizzazioni (ultimi 30 giorni)
I am trying to write code for the above problem but getting wrong answer, Kindly help me to find the error in the code or suggest if there is any better alternate way to write code for the problem.
Right answer is 2.3563
c=1.5;
h=0.1;
x=(c-h):h:(c+h);
Fun=@(x) exp(x)-exp(-x)/2;
dFun=@(x) 2*exp(x)+2*exp(-x)/2;
F=Fun(x);
n=length(x);
dx= (F(:,end)-F(:,1))/(2*h)
dx = 4.6009

Risposta accettata

Star Strider
Star Strider il 12 Ago 2023
See First and Second Order Central Difference and add enclosing parentheses to the numerator of your implementation of the cosh function.
  2 Commenti
VBBV
VBBV il 12 Ago 2023
Modificato: VBBV il 12 Ago 2023
c=1.5;
h=0.1;
x=(c-h):h:(c+h);
Fun=@(x) (exp(x)-exp(-x))/2; % parenthesis
dFun=@(x) 2*(exp(x)+exp(-x))/2; % parenthesis
F=Fun(x);
n=length(x);
dx= (F(:,end)-F(:,1))/(2*h)
dx = 2.3563
Anu
Anu il 30 Set 2023
c = 1.5;
h = 0.1;
x = (c - h):h:(c + h);
Fun = @(x) (exp(x) - exp(-x)) / 2;
F = Fun(x);
n = length(x);
dx = (F(3) - F(1)) / (2 * h); % Corrected calculation of derivative at x=c

Accedi per commentare.

Più risposte (1)

Anu
Anu il 30 Set 2023
  • c is the central point.
  • h is the step size.
  • x is a vector of values around c.
  • Fun is the function you want to calculate the derivative for.
  • F is the function values at the points in x.
  • dx calculates the derivative at the central point c using finite differences.

Categorie

Scopri di più su Matrix Computations in Help Center e File Exchange

Prodotti

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by