How can draw this kind of graph?

10 visualizzazioni (ultimi 30 giorni)
gkb
gkb il 13 Nov 2023
Modificato: DGM il 20 Nov 2023
how can we draw a velocity profile of the 3rd-order non-linear boundary value problem that converges for different values? give me code for u'''+u*u''+s*[Gr*G+Gm*H-M*u']=0 where s=0.02, Gm=10, Gr=4 and M=0.1 with boundary condition u=1,u'=0.001; G=0.001; H=0.001 when t=0 and u'=0; G-0; H=0 when t= infinity, where H=2 and G=4 within one graph for Different values of Gm
  6 Commenti
Torsten
Torsten il 13 Nov 2023
Use bvp4c or bvp5c to set up the problem.
Sam Chak
Sam Chak il 13 Nov 2023
@gkb, I'm confused.
You only introduced ONE differential equation in the question.
where the parameters other than the state variables u, , , are constants.
Why do F, G, and H magically appear in the context? Can we settle the first and then post another question for the system of differential equations F, G, H?

Accedi per commentare.

Risposte (1)

Syed Sohaib Zafar
Syed Sohaib Zafar il 19 Nov 2023
Modificato: DGM il 20 Nov 2023
Here's your required code
code_gkb_Matlab
%%%%%%%%%%%%%%%
function code_gkb_Matlab
global eps Gr Gm M Pr Jh Sc S0
%eq1
eps=0.001; Gr=0.5; M=0.5;
% eq2
Pr=1.4; Jh=0.3; %eps M
% eq3
Sc=0.7; S0=0.2;
val=[0.1 0.2 0.3 0.4];
for i = 1:1:4;
Gm = val(i);
solinit = bvpinit(linspace(0,6),[0 1 0 1 0 1 0]);
sol= bvp4c(@shootode,@shootbc,solinit);
eta = sol.x;
f = sol.y;
figure (1)
plot(eta,f(2,:));
xlabel( '\eta');
ylabel('\bf f'' (\eta)');
hold on
end
lgd=legend('Gm = 0.1','Gm = 0.2','Gm = 0.3','Gm = 0.4');
end
function dydx = shootode(eta,f);
global eps Gr Gm M Pr Jh Sc S0
dydx = [f(2)
f(3)
-f(1)*f(3)-eps*(Gr*f(4)+Gm*f(6)-M*f(2))
f(5)
-Pr*f(1)*f(5)+Jh*Pr*((1/eps)*f(3)^2+M*f(2)^2)
f(7)
2*Sc*f(2)*f(6)-Sc*f(1)*f(7)-S0*Sc*(-Pr*f(1)*f(5)+Jh*Pr*((1/eps)*f(3)^2+M*f(2)^2))
];
end
function res = shootbc(fa,fb)
global eps
res = [fa(1)-1; fa(2)-eps; fa(4)-eps; fa(6)-eps; fb(2)-0; fb(4)-0; fb(6)-0];
end
  1 Commento
DGM
DGM il 20 Nov 2023
Edited to add formatting and to make it run.

Accedi per commentare.

Prodotti


Release

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by